陀螺飛輪控制測量系統(tǒng)的設(shè)計與實現(xiàn)
發(fā)布時間:2018-04-27 14:21
本文選題:陀螺飛輪 + 姿態(tài)控制。 參考:《哈爾濱工業(yè)大學(xué)》2017年碩士論文
【摘要】:近年來,隨著微小航天器在航天航空領(lǐng)域的廣泛應(yīng)用,如何在保持性能的同時降低和簡化航天器的體積質(zhì)量成為當(dāng)前研究熱點。陀螺飛輪作為一種新型的姿態(tài)控制器件應(yīng)運而生,該器件在提供三自由度控制力矩的同時,具有敏感航天器兩軸角速度的能力。應(yīng)用其作為姿控系統(tǒng)中的執(zhí)行器和冗余的姿態(tài)敏感器,可以大幅簡化姿控系統(tǒng)的結(jié)構(gòu),對于微小航天器的開發(fā)具有現(xiàn)實意義。為分析研究陀螺飛輪的工作特點并實現(xiàn)系統(tǒng)測試,本文搭建了一套可用于進(jìn)行多種測試實驗的陀螺飛輪控制與測量系統(tǒng)。首先,本文基于陀螺飛輪的機械結(jié)構(gòu),分析了其作為執(zhí)行機構(gòu)以及姿態(tài)敏感元件的工作原理,為后續(xù)搭建陀螺飛輪控制測量系統(tǒng)提供了基礎(chǔ)理論。根據(jù)陀螺飛輪測試實驗的需求,在對控制測量系統(tǒng)進(jìn)行功能分析的基礎(chǔ)上,設(shè)計了系統(tǒng)總體結(jié)構(gòu),將系統(tǒng)開發(fā)分為硬件模塊和軟件模塊開發(fā)。在實驗平臺搭建完成后,根據(jù)需求分析—結(jié)構(gòu)設(shè)計—編程實現(xiàn)的順序,完成了系統(tǒng)中上位機軟件的開發(fā)。上位機軟件由非實時Win32進(jìn)程和實時RTSS進(jìn)程組成,其中非實時進(jìn)程完成了人機交互、實時顯示以及數(shù)據(jù)保存等任務(wù);實時實時完成了控制測量、狀態(tài)監(jiān)測等任務(wù)。兩個進(jìn)程通過共享內(nèi)存實現(xiàn)數(shù)據(jù)傳遞、通過事件對象實現(xiàn)進(jìn)程同步。基于實時通信需求,本文開發(fā)了適用于RTX環(huán)境下進(jìn)行數(shù)據(jù)采集發(fā)送的通信模塊。隨后,針對陀螺飛輪兩維傾側(cè)模型,本文設(shè)計了相應(yīng)的控制器。首先,基于歐拉方程,聯(lián)合陀螺飛輪物理特性,建立了完整動力學(xué)模型。隨后對該模型進(jìn)行相應(yīng)的簡化,得到了一個兩輸入兩輸出的耦合系統(tǒng)。基于解耦思想,選取了解耦控制方案,根據(jù)辨識實驗中獲取結(jié)果進(jìn)行了解耦環(huán)節(jié)和校正環(huán)節(jié)參數(shù)選取。辨識結(jié)果中部分參數(shù)與轉(zhuǎn)速相關(guān),但變化范圍不大。因此采用了固定解耦環(huán)節(jié)以及根據(jù)轉(zhuǎn)速自適應(yīng)選擇解耦參數(shù)的兩種解耦方案,通過仿真對比,發(fā)現(xiàn)自適應(yīng)解耦可以達(dá)到更優(yōu)秀的控制效果。最后,本文針對實際系統(tǒng)進(jìn)行了一系列的驗證實驗。首先對軟件進(jìn)行了功能測試,測試結(jié)果表明上位機軟件定時精度高、數(shù)據(jù)保存功能正確。隨后,闡述了辨識實驗過程及結(jié)果。同時,在樣機中驗證了兩種解耦方案的解耦效果和校正環(huán)節(jié)的控制效果。實驗結(jié)果表明陀螺飛輪系統(tǒng)可以穩(wěn)定運行,同時能夠快速跟蹤指令。以上結(jié)果證明本文開發(fā)方法及控制方式合理,具有實際參考價值。
[Abstract]:In recent years, with the wide application of small spacecraft in aerospace field, how to reduce and simplify the volume mass of spacecraft while maintaining its performance has become a hot topic. As a new type of attitude controller gyroscope flywheel emerges as the times require. This device can provide three degrees of freedom control torque and at the same time it has the ability of sensitive spacecraft two-axis angular velocity. As the actuators and redundant attitude sensors in attitude control system, the structure of attitude control system can be greatly simplified, which is of practical significance for the development of small spacecraft. In order to analyze the working characteristics of gyroscope flywheel and realize the system test, a gyroscope flywheel control and measurement system is set up in this paper, which can be used for many kinds of test experiments. Firstly, based on the mechanical structure of the gyroscope flywheel, the working principle of the gyroscope flywheel as an actuator and attitude sensitive element is analyzed, which provides a basic theory for the subsequent construction of the gyroscope flywheel control and measurement system. According to the requirement of gyroscope flywheel testing experiment, based on the analysis of the function of the control and measurement system, the overall structure of the system is designed, and the system development is divided into hardware module and software module development. After the construction of the experimental platform, according to the order of requirement analysis, structure design and programming, the software of the upper computer in the system is developed. The upper computer software consists of non-real-time Win32 process and real-time RTSS process, in which the non-real-time process completes the tasks of human-computer interaction, real-time display and data saving, real-time control measurement, state monitoring and so on. The two processes achieve data transfer through shared memory and process synchronization through event objects. Based on the requirement of real-time communication, this paper develops a communication module suitable for data acquisition and transmission in RTX environment. Then, aiming at the two-dimensional tilting model of gyroscope flywheel, the corresponding controller is designed in this paper. Firstly, based on the Euler equation and the physical characteristics of gyroscope flywheel, a complete dynamic model is established. Then the model is simplified and a coupling system with two inputs and two outputs is obtained. Based on the decoupling idea, the decoupling control scheme is selected, and the parameters of decoupling and correction are selected according to the results obtained in the identification experiment. Some of the parameters in the identification results are related to the rotational speed, but the range is small. Therefore, two decoupling schemes are adopted, which are fixed decoupling and adaptive selection of decoupling parameters according to rotational speed. Through simulation and comparison, it is found that adaptive decoupling can achieve better control effect. Finally, a series of verification experiments are carried out for the actual system. Firstly, the software is tested, and the test results show that the software has high timing precision and correct data saving function. Then, the process and result of identification experiment are described. At the same time, the decoupling effect and control effect of the two decoupling schemes are verified in the prototype. The experimental results show that the gyroscope flywheel system can run stably and can track instructions quickly. The above results prove that the development method and control method of this paper are reasonable and have practical reference value.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:V441;TP311.52
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳璐;袁建平;;基于雙框架變速控制力矩陀螺的航天器姿態(tài)控制研究[J];電子設(shè)計工程;2014年23期
2 范志涵;張召才;;國外小衛(wèi)星最新發(fā)展研究[J];國際太空;2013年08期
3 邊志強;程衛(wèi)強;薛孝補;于永江;;基于陀螺和星敏感器的衛(wèi)星姿態(tài)確定算法[J];航天器工程;2011年02期
4 韓輔君;房建成;;磁懸浮飛輪轉(zhuǎn)子系統(tǒng)的現(xiàn)場動平衡方法[J];航空學(xué)報;2010年01期
5 劉松林;盧連成;劉陽;李婷婷;劉晗;;美國軍用衛(wèi)星應(yīng)急發(fā)射現(xiàn)狀[J];導(dǎo)彈與航天運載技術(shù);2008年04期
6 張連超;范大鵬;范世s,
本文編號:1811080
本文鏈接:http://www.sikaile.net/kejilunwen/ruanjiangongchenglunwen/1811080.html
最近更新
教材專著