基于神經(jīng)網(wǎng)絡(luò)的立體圖像質(zhì)量客觀評(píng)價(jià)
發(fā)布時(shí)間:2018-04-21 13:28
本文選題:立體圖像 + 客觀評(píng)價(jià); 參考:《天津大學(xué)》2016年碩士論文
【摘要】:隨著立體成像技術(shù)的不斷發(fā)展,準(zhǔn)確、有效地評(píng)價(jià)立體圖像質(zhì)量已成為立體技術(shù)領(lǐng)域的研究熱點(diǎn)及難點(diǎn)之一。立體圖像質(zhì)量的評(píng)價(jià)方法分為主觀評(píng)價(jià)和客觀評(píng)價(jià)兩種。主觀評(píng)價(jià)由合格被試依據(jù)自身主觀感受對(duì)測(cè)試圖像質(zhì)量給出評(píng)分,這種方法能夠真實(shí)準(zhǔn)確地反映圖像的質(zhì)量,但它耗時(shí)耗力,且可操作性較差。因而,建立一套有效的立體圖像質(zhì)量客觀評(píng)價(jià)模型已成為立體成像技術(shù)的重點(diǎn)研究課題之一。論文在對(duì)立體圖像質(zhì)量評(píng)價(jià)的研究背景、發(fā)展現(xiàn)狀、發(fā)展趨勢(shì)及其他相關(guān)理論進(jìn)行闡述的基礎(chǔ)上,考慮到目前人類視覺系統(tǒng)的相關(guān)研究仍存在較大的局限性,提出采用正交局部保留投影和極端學(xué)習(xí)機(jī)的方法建立立體圖像質(zhì)量評(píng)價(jià)系統(tǒng)。鑒于立體圖像具有復(fù)雜度高、信息量大的特點(diǎn),論文選取正交局部保留投影法對(duì)圖像進(jìn)行有效地降維處理,該方法可以在對(duì)圖像降維的同時(shí)保留不同類別圖像間的結(jié)構(gòu),可以更有效地提取出立體圖像的特征。極端學(xué)習(xí)機(jī)網(wǎng)絡(luò)具有參數(shù)選擇簡單、泛化性好等特點(diǎn),但是該網(wǎng)絡(luò)具有一定的隨機(jī)性。鑒于此,論文提出采用經(jīng)過遺傳算法優(yōu)化的極端學(xué)習(xí)機(jī)作為分類器,使評(píng)價(jià)系統(tǒng)可以獲取更好的分類識(shí)別性能。本文選取了380幅經(jīng)過不同失真處理、覆蓋不同評(píng)分等級(jí)的立體圖像,其中154幅為訓(xùn)練樣本,226幅為測(cè)試樣本。實(shí)驗(yàn)結(jié)果表明,選用正交局部保留投影法作為特征提取方法,使用ELM分類器在測(cè)試樣本中的客觀評(píng)分正確率可以達(dá)到93.36%,比選用主成分分析法所能達(dá)到的92.03%的準(zhǔn)確率有更好的表現(xiàn)。使用遺傳算法對(duì)網(wǎng)絡(luò)參數(shù)進(jìn)行優(yōu)化后,ELM網(wǎng)絡(luò)的分類正確率可以達(dá)到96.03%,使評(píng)價(jià)系統(tǒng)的準(zhǔn)確率有了明顯的提高。此外,本文還對(duì)不同神經(jīng)網(wǎng)絡(luò)分類器的質(zhì)量評(píng)價(jià)性能進(jìn)行了分析比較。
[Abstract]:With the development of stereo imaging technology, accurate and effective evaluation of stereo image quality has become one of the hot and difficult research fields. The evaluation methods of stereo image quality can be divided into subjective evaluation and objective evaluation. The subjective evaluation is evaluated by the qualified subjects according to their subjective feelings. This method can reflect the image quality truthfully and accurately, but it is time-consuming and energy consuming, and its operability is poor. Therefore, the establishment of an effective objective evaluation model of stereo image quality has become one of the key research topics of stereo imaging technology. Based on the research background, development status, development trend and other related theories of stereo image quality evaluation, this paper considers that there are still some limitations in the research of human visual system. A stereo image quality evaluation system based on orthogonal local preserving projection and extreme learning machine is proposed. In view of the high complexity and large amount of information of the stereo image, the orthogonal local preserving projection method is selected to reduce the dimension of the image effectively. This method can reduce the dimension of the image while preserving the structure of different kinds of images. The feature of stereo image can be extracted more effectively. Extreme learning machine network is characterized by simple parameter selection, good generalization and so on, but it has some randomness. In view of this, the paper proposes to use the extreme learning machine optimized by genetic algorithm as the classifier, so that the evaluation system can obtain better classification and recognition performance. In this paper, 380 stereo images with different distortion processing are selected, of which 154 are training samples and 226 are test samples. The experimental results show that the orthogonal locally reserved projection method is used as the feature extraction method. The objective scoring accuracy of ELM classifier in test samples can reach 93.36, which is better than the 92.03% accuracy of principal component analysis. After the optimization of network parameters by genetic algorithm, the classification accuracy of ELM network can reach 96.03, which improves the accuracy of the evaluation system obviously. In addition, the quality evaluation performance of different neural network classifiers is analyzed and compared.
【學(xué)位授予單位】:天津大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TP391.41;TP183
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 韓偉;;日本立體圖像技術(shù)近十年的回顧與前瞻[J];有線電視技術(shù);2011年07期
2 楊s,
本文編號(hào):1782632
本文鏈接:http://www.sikaile.net/kejilunwen/ruanjiangongchenglunwen/1782632.html
最近更新
教材專著