相關性濾波器運動目標跟蹤算法
發(fā)布時間:2018-04-11 11:20
本文選題:相關性濾波器 + 多尺度; 參考:《昆明理工大學》2017年碩士論文
【摘要】:運動目標跟蹤是計算機視覺中的重要環(huán)節(jié),在軍用、公共安全和自動駕駛等領域有著廣泛的運用。檢測技術的發(fā)展早于跟蹤技術,已經(jīng)有許多效果突出且理論基礎完善的算法。借助檢測技術的實時檢測跟蹤(Tracking by Detection)是近年突起的一類跟蹤方法,在每一幀檢測到目標以實現(xiàn)連續(xù)視頻序列目標的跟蹤,具有較好的跟蹤性能。其代表是Kernelized Correlation Filter算法,通過訓練一個相關性濾波器進行相關性濾波以實現(xiàn)檢測。本文的研究重點是相關性濾波器的多尺度跟蹤以及模板漂移時的持續(xù)跟蹤。提出一種多尺度的內(nèi)核化相關性濾波器ACF算法,F(xiàn)有改進方法多是基于MOSSE的多尺度改進方法,本文將其擴展至KCF,利用KCF循環(huán)結構對角化的性質(zhì)進行高效、高精度的位置濾波。再利用目標尺度金字塔對目標進行多尺度表達,利用卷積定理在傅里葉域中對目標進行尺度濾波,并根據(jù)上一幀檢測結果的尺度變化率,適時地調(diào)用尺度優(yōu)先策略或位置優(yōu)先策略,使得跟蹤器在權衡尺度變化與位移變化時更具魯棒性。對于模板漂移的持久跟蹤,提出一種持續(xù)目標模板——CUR濾波器。CUR濾波器以矩陣降維技術為核心,使用CUR分解中構建R矩陣的方法,從包含了所有成功檢測目標信息的歷史矩陣Q中構建CUR濾波器,最大程度地保留目標的特征信息,實現(xiàn)目標的持續(xù)性表達。當跟蹤器跟蹤失敗時,使用CUR濾波器作為下一幀檢測的目標外觀模型,由于CUR具有目標持續(xù)表達的特性,因此,能夠不受跟蹤失敗幀的影響,實現(xiàn)目標的持續(xù)跟蹤。
[Abstract]:Moving target tracking is an important part of computer vision, which is widely used in military, public safety and autopilot fields.The development of detection technology is earlier than that of tracking technology, and there are many algorithms with outstanding effect and perfect theoretical foundation.Tracking by Detection with the help of detection technology is a kind of tracking method which has been raised in recent years. In order to realize the tracking of continuous video sequences, the target is detected in every frame, and it has good tracking performance.It is represented by Kernelized Correlation Filter algorithm, which can be detected by training a correlation filter for correlation filtering.The emphasis of this paper is the multi-scale tracking of correlation filter and the continuous tracking of template drift.A multi-scale kernel correlation filter (ACF) algorithm is proposed.Most of the existing improvement methods are based on MOSSE. In this paper, we extend them to KCFs and use the diagonalization property of KCF cyclic structure to carry out efficient and high-precision position filtering.Then the multi-scale representation of the target is performed by using the target scale pyramid, and the scale filtering is carried out in the Fourier domain by using convolution theorem, and the scale change rate of the detection result of the previous frame is calculated according to the scale change rate of the detection result.The scale-first strategy or location-first strategy is called in time, which makes the tracker more robust in balancing the scale change with the displacement change.For the persistent tracking of template drift, a method of constructing R-matrix by using CUR decomposition is proposed, which is based on matrix dimension reduction technology.The CUR filter is constructed from the history matrix Q which contains all the information of the successful target detection. The feature information of the target is preserved to the maximum extent and the persistent expression of the target is realized.When the tracker fails, the CUR filter is used as the target appearance model for the next frame detection. Because CUR has the feature of continuous expression of the target, it can realize the continuous tracking of the target without the influence of the tracking failed frame.
【學位授予單位】:昆明理工大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP391.41
【參考文獻】
相關期刊論文 前8條
1 曾巧玲;文貢堅;;運動目標跟蹤綜述[J];重慶理工大學學報(自然科學);2016年07期
2 劉威;趙文杰;李成;徐忠林;李婷;;粒子濾波理論框架及在目標跟蹤中的應用[J];自動化與儀器儀表;2016年03期
3 王法勝;魯明羽;趙清杰;袁澤劍;;粒子濾波算法[J];計算機學報;2014年08期
4 孔軍;湯心溢;蔣敏;葛運建;;基于多尺度特征提取的均值漂移目標跟蹤算法[J];計算機工程;2011年22期
5 孔軍;湯心溢;蔣敏;劉士建;李丹;;基于多尺度特征提取的Kalman濾波跟蹤[J];紅外與毫米波學報;2011年05期
6 王建東;王亞飛;張晶;;基于卡爾曼濾波器的運動目標跟蹤算法[J];數(shù)字通信;2009年06期
7 薛陳;朱明;劉春香;;遮擋情況下目標跟蹤算法綜述[J];中國光學與應用光學;2009年05期
8 羅寰;于雷;廖俊;穆中林;;復雜背景下紅外弱小多目標跟蹤系統(tǒng)[J];光學學報;2009年06期
,本文編號:1735806
本文鏈接:http://www.sikaile.net/kejilunwen/ruanjiangongchenglunwen/1735806.html
最近更新
教材專著