基于非平穩(wěn)度量的擴(kuò)散磁共振成像心肌纖維重建算法研究
本文選題:擴(kuò)散磁共振成像 切入點(diǎn):心肌纖維 出處:《哈爾濱工業(yè)大學(xué)》2017年碩士論文 論文類(lèi)型:學(xué)位論文
【摘要】:心臟疾病嚴(yán)重影響人們的生活和健康。相關(guān)醫(yī)學(xué)研究表明,心臟生理特性和病理信息可由心肌纖維的結(jié)構(gòu)反映。擴(kuò)散磁共振成像是心臟纖維成像的重要手段,具有無(wú)創(chuàng)性和非侵入性特點(diǎn)。目前基于擴(kuò)散磁共振的重建算法主要用于腦部研究,心肌纖維重建研究相對(duì)較少。本課題研究了向量數(shù)據(jù)的非平穩(wěn)度量,提出了基于向量非平穩(wěn)度量的快速行進(jìn)纖維重建方法,并利用該方法對(duì)仿真和真實(shí)的心臟擴(kuò)散磁共振數(shù)據(jù)進(jìn)行纖維重建。首先,介紹了擴(kuò)散磁共振張量成像原理,并依據(jù)該原理實(shí)現(xiàn)了多方向擴(kuò)散加權(quán)圖像合成擴(kuò)散張量圖像。選取張量模型來(lái)描述水分子的擴(kuò)散運(yùn)動(dòng),給出了張量的特征向量、各向異性系數(shù)及其它相關(guān)測(cè)度的計(jì)算方法和張量可視化方法,用于后續(xù)向量非平穩(wěn)度量的研究和纖維重建。其次,研究了向量數(shù)據(jù)的非平穩(wěn)度量。非平穩(wěn)度量的概念經(jīng)過(guò)拓展后能夠應(yīng)用于多種類(lèi)型的數(shù)據(jù)中,本文給出向量數(shù)據(jù)非平穩(wěn)度量的計(jì)算方法;將向量數(shù)據(jù)的非平穩(wěn)度量與基于統(tǒng)計(jì)特征和最小向量分散度兩種方法進(jìn)行對(duì)比,實(shí)驗(yàn)表明非平穩(wěn)度量在向量數(shù)據(jù)處理中,具有良好的抗噪性。最后,提出了基于非平穩(wěn)度量的快速行進(jìn)纖維重建方法。在構(gòu)建時(shí)間場(chǎng)的過(guò)程中,對(duì)靜態(tài)Hamilton-Jacobi方程的解法進(jìn)行了改進(jìn),使得時(shí)間場(chǎng)的計(jì)算更加準(zhǔn)確;利用向量非平穩(wěn)度量構(gòu)建速度函數(shù)的自適應(yīng)系數(shù),使改進(jìn)的速度函數(shù)更符合心肌纖維的結(jié)構(gòu)特性;對(duì)改進(jìn)后的算法進(jìn)行仿真數(shù)據(jù)實(shí)驗(yàn)和心臟數(shù)據(jù)實(shí)驗(yàn)驗(yàn)證,結(jié)果表明改進(jìn)后的算法在重建心肌纖維方面能夠很好地保持心肌纖維的局部一致性,在纖維曲率較大的區(qū)域能夠很好地控制纖維前進(jìn)的方向。
[Abstract]:Heart disease seriously affects people's life and health. Relevant medical studies have shown that cardiac physiological characteristics and pathological information can be reflected by the structure of myocardial fibers. Diffusion magnetic resonance imaging (DMR) is an important means of cardiac fiber imaging. It has the characteristics of non-invasive and non-invasive. At present, the reconstruction algorithm based on diffusive magnetic resonance is mainly used in brain research, but the research of myocardial fiber reconstruction is relatively few. The non-stationary measurement of vector data is studied in this paper. In this paper, a fast fiber reconstruction method based on vector nonstationary measurement is proposed, and the simulation and real diffusion magnetic resonance data are reconstructed using this method. Firstly, the principle of diffusive magnetic resonance Zhang Liang imaging is introduced. According to this principle, the diffusion Zhang Liang image is synthesized by using multi-directional diffusion weighted image, and then the Zhang Liang model is selected to describe the diffusion motion of water molecules, and the eigenvector of Zhang Liang is given. The calculation method of anisotropic coefficient and other related measures and Zhang Liang visualization method are used in the research of nonstationary measure of follow-up vector and fiber reconstruction. Secondly, This paper studies the nonstationary metric of vector data. The concept of nonstationary metric can be applied to many kinds of data after being extended. In this paper, the calculation method of nonstationary metric of vector data is given. The non-stationary metric of vector data is compared with the two methods based on statistical feature and minimum vector dispersion. The experimental results show that the non-stationary metric has good noise resistance in vector data processing. A fast moving fiber reconstruction method based on nonstationary metric is proposed. In the process of constructing time field, the solution of static Hamilton-Jacobi equation is improved to make the calculation of time field more accurate. The adaptive coefficient of the velocity function is constructed by vector nonstationary measurement to make the improved velocity function more accord with the structure characteristics of myocardial fiber, and the improved algorithm is verified by simulation data experiment and heart data experiment. The results show that the improved algorithm can keep the local consistency of myocardial fiber in the reconstruction of myocardial fiber and control the direction of fiber forward in the region with larger fiber curvature.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:R445.2;TP391.41
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王振天;張麗;邢宇翔;康克軍;;統(tǒng)計(jì)重建算法綜述[J];CT理論與應(yīng)用研究;2007年04期
2 金燕南;趙俊;劉尊鋼;莊天戈;;三源螺旋CT精確重建算法在動(dòng)態(tài)重建中的應(yīng)用[J];航天醫(yī)學(xué)與醫(yī)學(xué)工程;2009年06期
3 鄭健;俞航;蒯多杰;劉兆邦;董月芳;張濤;;多層CT重建算法對(duì)比研究[J];CT理論與應(yīng)用研究;2012年04期
4 白玫;楊雨;嚴(yán)漢民;;多排螺旋CT自適應(yīng)統(tǒng)計(jì)迭代重建算法的客觀評(píng)價(jià)[J];中國(guó)醫(yī)學(xué)裝備;2013年01期
5 程明淵;賀奇才;胡琴明;陳弟虎;;基于穿越長(zhǎng)度權(quán)重迭代重建算法的研究[J];中國(guó)醫(yī)學(xué)物理學(xué)雜志;2013年02期
6 閆鑌;韓玉;魏峰;李磊;李建新;;錐束CT超視野成像重建算法綜述[J];CT理論與應(yīng)用研究;2013年02期
7 陳志強(qiáng),李亮,康克軍,張麗;錐束CT 精確重建算法研究最新進(jìn)展(英文)[J];CT理論與應(yīng)用研究;2005年03期
8 朱揚(yáng)明;莊天戈;;有限角圖象重建的虛擬對(duì)稱重建算法[J];CT理論與應(yīng)用研究;1992年01期
9 王小璞,張朋,李興東,張兆田;一種塊迭代的快速代數(shù)重建算法(英文)[J];CT理論與應(yīng)用研究;2000年S1期
10 史穎琴;潘晉孝;;Feldkamp-type-VOI錐束CT重建算法加速的研究[J];CT理論與應(yīng)用研究;2011年01期
相關(guān)會(huì)議論文 前10條
1 胡永勝;;重建算法對(duì)低劑量肺部CT掃描圖像質(zhì)量和診斷的影響[A];2010中華醫(yī)學(xué)會(huì)影像技術(shù)分會(huì)第十八次全國(guó)學(xué)術(shù)大會(huì)論文集[C];2010年
2 宋e,
本文編號(hào):1596412
本文鏈接:http://www.sikaile.net/kejilunwen/ruanjiangongchenglunwen/1596412.html