基于智能視頻的人數(shù)統(tǒng)計(jì)的研究與應(yīng)用
本文選題:運(yùn)動(dòng)檢測(cè) 切入點(diǎn):目標(biāo)跟蹤 出處:《廣西師范大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:近年來,隨著電子信息產(chǎn)業(yè)制造技術(shù)的提高、硬件成本的降低,給計(jì)算機(jī)視覺技術(shù)帶來了飛速發(fā)展的機(jī)會(huì),加上社會(huì)各行業(yè)對(duì)智能視頻的需求與日俱增,使得智能視覺成為一個(gè)理論和技術(shù)應(yīng)用上熱門的研究領(lǐng)域,基于視頻的智能人數(shù)統(tǒng)計(jì)成為了該領(lǐng)域的熱門研究方向之一。本文設(shè)計(jì)的基于視頻的智能人數(shù)統(tǒng)計(jì)系統(tǒng)主要是針對(duì)于商場(chǎng)的人數(shù)統(tǒng)計(jì),通過統(tǒng)計(jì)主要通道客流狀態(tài),從而進(jìn)行店面的合理分布;統(tǒng)計(jì)各個(gè)區(qū)域的吸引率和繁忙度;有效評(píng)估所舉行的營(yíng)銷和促銷投資的回報(bào);顯示當(dāng)前客流狀態(tài)和變化趨勢(shì),安全保衛(wèi)部門可以對(duì)流量較大的區(qū)域采取預(yù)防突發(fā)事件的措施,并可實(shí)時(shí)觀察當(dāng)前的實(shí)際人數(shù)及圖像等,比傳統(tǒng)的監(jiān)控系統(tǒng)更加智能化。本文從硬件和軟件部分進(jìn)行設(shè)計(jì),硬件方面與傳統(tǒng)方案區(qū)別不大,只是比一般的系統(tǒng)增加了基于App的客戶端,所以不做詳細(xì)介紹,系統(tǒng)實(shí)現(xiàn)的重點(diǎn)與難點(diǎn)在于對(duì)運(yùn)動(dòng)人體目標(biāo)檢測(cè)技術(shù)、頭部識(shí)別的機(jī)器學(xué)習(xí)方法和移動(dòng)目標(biāo)跟蹤計(jì)數(shù)等,所以從以下幾個(gè)方面展開研究:首先,分析人數(shù)統(tǒng)計(jì)系統(tǒng)使用的環(huán)境是商場(chǎng)的門口等人流密集的地方,通過方案比較,我們選取采用Rossi等提出的攝像機(jī)垂直架設(shè)拍照方法,采取檢測(cè)人體頭部區(qū)域。其優(yōu)點(diǎn)是當(dāng)行人靠近或肢體之間相互接觸發(fā)生遮擋時(shí),依然能夠提取行人較為完整的頭部信息,盡可能地減少由于遮擋引起的漏判。然后,使用幀間差分法從視頻幀中提取運(yùn)動(dòng)目標(biāo),然后再以運(yùn)動(dòng)目標(biāo)的外接矩形框作為后續(xù)人頭檢測(cè)的檢測(cè)區(qū)域。研究表明行人頭部檢測(cè)采用基于HOG特征提取、線性支持向量機(jī)作為分類器的檢測(cè)方法,是目前行人檢測(cè)中綜合性能較好的。接下來對(duì)視頻場(chǎng)景中的行人進(jìn)行跟蹤計(jì)數(shù)。研究了經(jīng)典的HS光流法和LK光流法。其中LK光流計(jì)算方法因?yàn)殪`活性高、計(jì)算量相對(duì)較小更適合應(yīng)用在目標(biāo)跟蹤中。對(duì)于空間運(yùn)動(dòng)位移較大的光流計(jì)算,將圖像進(jìn)行金字塔分解來提高光流矢量求解的精確度。在計(jì)數(shù)時(shí),對(duì)場(chǎng)景設(shè)定感興趣區(qū)域,并只對(duì)經(jīng)過感興趣區(qū)域的行人進(jìn)行計(jì)數(shù),并可以準(zhǔn)確的判斷進(jìn)出方向?梢愿鶕(jù)實(shí)際的需要情況,隨意設(shè)定感興趣區(qū)域,從而提高了系統(tǒng)的實(shí)用性。最后,對(duì)于APP的開發(fā),本文主要介紹iOS操作系統(tǒng)的APP客戶端的開發(fā),采用的流程為:服務(wù)器端把檢測(cè)到人數(shù)變化的圖片保存為jpg格式文件,并存儲(chǔ)在服務(wù)器,再向遠(yuǎn)程控制終端發(fā)送通知,控制終端解析推送通知,通過協(xié)議請(qǐng)求服務(wù)器中的圖片以獲得人數(shù)統(tǒng)計(jì)結(jié)果的實(shí)時(shí)圖片。本文是以運(yùn)動(dòng)目標(biāo)前景檢測(cè)、基于機(jī)器學(xué)習(xí)的頭部識(shí)別以及目標(biāo)跟蹤等技術(shù)在人數(shù)統(tǒng)計(jì)系統(tǒng)中實(shí)現(xiàn)了具體的應(yīng)用案例。并且能夠成功地在iOS手機(jī)客戶端接收到人數(shù)變化的通知,得到人數(shù)變化時(shí)的圖片。為了驗(yàn)證所用到的算法在本文提出的硬件配置要求不高的系統(tǒng)中的有效性、實(shí)時(shí)性及可靠性,采取了對(duì)大量不同場(chǎng)景下及不同人數(shù)的條件下的視頻進(jìn)行了測(cè)試,測(cè)試結(jié)果表明系統(tǒng)對(duì)于人數(shù)統(tǒng)計(jì)能夠準(zhǔn)確、有效的檢測(cè)視頻當(dāng)中的行人頭部,并在跟蹤計(jì)數(shù)時(shí)具有較好的實(shí)用效果,達(dá)到預(yù)期設(shè)計(jì)目的。
[Abstract]:In recent years, along with the electronic information industry of manufacturing technology, reduce the cost of hardware, has brought great opportunities for the development of computer vision technology, with all sectors of society, demand for intelligent video makes intelligent vision become grow with each passing day, a theory and technology applied on the hot research field, the number of intelligent video based on statistics has become one of the most popular research direction in this field. The design of the intelligent video system based on the number of statistics is mainly based on the number of shopping malls statistics, through the statistics of the main channel flow state, so as to store the reasonable distribution; statistics in various regions of the attractive rate and busy degree; effective evaluation of a marketing and promotion investment return; display the current status and trend of the passenger flow, the security departments can take emergency prevention measures for regional heavy traffic, and real-time observation The actual number and image, more intelligent than the traditional monitoring system. This paper designed from hardware and software, hardware and the traditional scheme is very different, than the average increase of App system based on client, so the details do not system, emphases and difficulties of the realization of human motion target detection the head of the recognition technology, machine learning method and moving target tracking and counting, so from the following several aspects: first, analysis of the use of statistical system environment is the mall entrance and other populated areas, through the plan comparison, we selected by Rossi's camera is vertically erected photographing method detected by human head region the utility model has the advantages of contact with each other. When the occlusion occurred between pedestrians or near the limb, still be able to complete the extraction of pedestrian head information, as far as possible To reduce the occlusion caused by the leakage judgment. Then, using the frame difference method to extract moving objects from video frames, then the moving target rectangle as the detection area following head detection. According to the research on pedestrian head detection using HOG based feature extraction, linear support vector machine classifier as detection method at present, pedestrian detection is a good comprehensive performance. The next track count of the pedestrian in the video scene. The classic HS LK optical flow method and optical flow method. The LK optical flow calculation method for high flexibility, less calculation is more suitable for application in target tracking. The space motion of large displacement optical flow calculation. The image of the Pyramid decomposition to improve the accuracy of optical flow vector solution. In the count, area of interest to the scene, and only to the region of interest for pedestrians The number, and can accurately determine the direction of import. According to the actual situation, arbitrarily set the region of interest, so as to improve the practicality of the system. Finally, for the development of APP, this paper mainly introduces the development of iOS operating system APP client, the server process is: to detect the number of pictures saved as JPG files, and stored in the server, and then sent to the remote control terminal, the control terminal of push notifications, real-time image server in the picture by protocol request to obtain statistical results. This paper is based on the number of motion object detection, machine learning head recognition and target tracking technology to achieve the application the specific cases in the statistical system based on. And successfully received at the mobile phone iOS client to change the number of notification, the picture changes. In order to get the number of inspection The effectiveness of the system hardware configuration requirements proposed by the algorithm used in this paper is not high in the real time and reliability, take on a large number of different scenarios and different number of video conditions were tested, the test results show that the system can accurately for the number of statistics, the effective detection of pedestrian head video, and has a better practical effect in the tracking and counting, achieve the expected design objective.
【學(xué)位授予單位】:廣西師范大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP391.41
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 周同雪;朱明;;視頻圖像中的運(yùn)動(dòng)目標(biāo)檢測(cè)[J];液晶與顯示;2017年01期
2 朱璐瑤;;改進(jìn)的Horn-Schunck光流法在目標(biāo)追蹤中的應(yīng)用[J];中國(guó)體視學(xué)與圖像分析;2015年03期
3 王彬;翁政魁;王坤;劉輝;;基于Lucas-Kanada光流法的人眼特征點(diǎn)實(shí)時(shí)跟蹤方法[J];計(jì)算機(jī)工程;2015年07期
4 朱聰聰;項(xiàng)志宇;;基于梯度方向和強(qiáng)度直方圖的紅外行人檢測(cè)[J];計(jì)算機(jī)工程;2014年12期
5 宋爽;楊健;王涌天;;全局光流場(chǎng)估計(jì)技術(shù)及展望[J];計(jì)算機(jī)輔助設(shè)計(jì)與圖形學(xué)學(xué)報(bào);2014年05期
6 郭明瑋;趙宇宙;項(xiàng)俊平;張陳斌;陳宗海;;基于支持向量機(jī)的目標(biāo)檢測(cè)算法綜述[J];控制與決策;2014年02期
7 黃志良;張利勛;;運(yùn)動(dòng)目標(biāo)光流場(chǎng)算法研究進(jìn)展[J];激光雜志;2013年01期
8 高飛;蔣建國(guó);安紅新;齊美彬;;一種快速運(yùn)動(dòng)目標(biāo)檢測(cè)算法[J];合肥工業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年02期
9 江濟(jì)良;屠大維;周許超;陳勇;;復(fù)雜光流場(chǎng)運(yùn)動(dòng)分析與特征提取[J];電子測(cè)量與儀器學(xué)報(bào);2011年03期
10 顧德軍;伍鐵軍;;一種基于人頭特征的人數(shù)統(tǒng)計(jì)方法研究[J];機(jī)械制造與自動(dòng)化;2010年04期
相關(guān)碩士學(xué)位論文 前9條
1 程栗;基于視頻監(jiān)控的人流量統(tǒng)計(jì)系統(tǒng)研究[D];西南科技大學(xué);2015年
2 張丙坤;基于人頭檢測(cè)的人數(shù)統(tǒng)計(jì)算法研究[D];西安科技大學(xué);2013年
3 韓海宏;基于iOS平臺(tái)移動(dòng)視頻監(jiān)控客戶端的設(shè)計(jì)與實(shí)現(xiàn)[D];電子科技大學(xué);2013年
4 鄭馳;基于光流法的單目視覺里程計(jì)研究[D];浙江大學(xué);2013年
5 邢留濤;車輛行駛狀況的檢測(cè)與識(shí)別算法探討[D];中南大學(xué);2011年
6 高飛;基于DSP的多運(yùn)動(dòng)目標(biāo)檢測(cè)與跟蹤技術(shù)研究[D];合肥工業(yè)大學(xué);2011年
7 李莉;視頻序列中運(yùn)動(dòng)目標(biāo)檢測(cè)技術(shù)研究[D];合肥工業(yè)大學(xué);2009年
8 周柯;基于HOG特征的圖像人體檢測(cè)技術(shù)的研究與實(shí)現(xiàn)[D];華中科技大學(xué);2008年
9 張少婧;基于光流技術(shù)的MEMS平面微運(yùn)動(dòng)特性的測(cè)量[D];天津大學(xué);2006年
,本文編號(hào):1561727
本文鏈接:http://www.sikaile.net/kejilunwen/ruanjiangongchenglunwen/1561727.html