真空環(huán)境下差壓注型工藝決策方法研究
本文關鍵詞: 真空注型 STL分層 體素化 質(zhì)量控制 出處:《河南科技大學》2017年碩士論文 論文類型:學位論文
【摘要】:隨著市場一體化加劇,企業(yè)為在激烈的市場競爭中生存發(fā)展并占據(jù)有利地位,必須滿足客戶對產(chǎn)品多樣化與個性化需求,具有較強開發(fā)能力的增材制造(Additive Manufacturing,AM)技術已經(jīng)成為當今研究的熱門課題。3D打印技術和快速模具(Rapid Tooling,RT)技術是AM主要技術支撐,RT中應用最為廣泛的真空注型(Vacuum Casting,VC)技術,對產(chǎn)品創(chuàng)新、縮短開發(fā)周期、發(fā)展綠色生產(chǎn)具有積極的推動作用。但是,目前對VC產(chǎn)品的質(zhì)量控制主要依靠人為經(jīng)驗,自動化程度低,一定程度上制約VC技術的快速發(fā)展。因此,研究VC產(chǎn)品質(zhì)量智能控制方法,改變傳統(tǒng)依靠人為經(jīng)驗的模式,對提高VC領域產(chǎn)品生產(chǎn)效率和新產(chǎn)品開發(fā)能力具有重要的現(xiàn)實意義。本文以VC成形工藝為研究對象,以VC工藝過程為主線,以提高VC產(chǎn)品質(zhì)量為目的,基于計算機圖形學、可視化技術、智能控制理論等,研究VC成形工藝機理,總結(jié)目前VC產(chǎn)品在成形時出現(xiàn)的質(zhì)量缺陷和形成缺陷的原因,分析影響產(chǎn)品質(zhì)量的關鍵工藝參數(shù);研究模具型腔幾何特征獲取方法,建立一種基于產(chǎn)品STL模型的模具型腔幾何信息獲取方法;在此基礎上,研究產(chǎn)品質(zhì)量的智能控制方法,建立基于案例推理(Case Based Reasoning,CBR)與基于規(guī)則推理(Rule Based Reasoning,RBR)相結(jié)合的產(chǎn)品質(zhì)量智能控制模型;最后,根據(jù)研究所得理論、方法及控制技術,建立VC產(chǎn)品質(zhì)量智能控制系統(tǒng),并試驗驗證上述理論方法的正確性和有效性,為實現(xiàn)VC產(chǎn)品工藝智能決策和質(zhì)量智能控制提供一種可行的方法。論文的主要研究內(nèi)容包括以下幾個方面:1.針對目前VC成形工藝主要依賴工作人員經(jīng)驗,試模周期長,VC產(chǎn)品質(zhì)量的穩(wěn)定性較差等問題,分析VC產(chǎn)品常見質(zhì)量缺陷和VC成形工藝機理,闡述影響產(chǎn)品質(zhì)量的關鍵因素及亟待解決的問題。2.研究模具幾何特征獲取方法,提出一種逆向幾何求交算法,通過對產(chǎn)品STL模型進行快速分層和離散化處理,構(gòu)建描述模具型腔的體素化模型,并以此模型為基礎,獲取產(chǎn)品體積、表面積和平均壁厚等模具型腔幾何信息,為快速獲取VC產(chǎn)品幾何特征信息提供一種可行的方法。3.針對目前VC產(chǎn)品質(zhì)量依賴于設計人員經(jīng)驗控制,造成產(chǎn)品質(zhì)量穩(wěn)定性差、成本高的問題。以歷史案例為支撐,總結(jié)工作人員的知識經(jīng)驗,采用CBR與RBR相結(jié)合的推理方法,建立描述VC成形工藝和質(zhì)量控制的混合智能決策模型,實現(xiàn)VC產(chǎn)品缺陷智能修正,為產(chǎn)品的質(zhì)量智能控制提供一種有效方法。4.基于產(chǎn)品質(zhì)量智能控制模型,在Microsoft Visual Studio 2010環(huán)境下,開發(fā)CBR與RBR相結(jié)合的產(chǎn)品質(zhì)量智能控制系統(tǒng),并對某電器盒蓋進行成形試驗,驗證上述理論方法的正確性和有效性。
[Abstract]:With the aggravation of market integration, in order to survive and develop in the fierce market competition and occupy a favorable position, enterprises must meet the needs of customers for product diversification and individuation. Additive Manufacturing with strong development ability. AMtechnology has become a hot research topic. 3D printing technology and rapid tooling RTT technology are the main technical support of AM. The vacuum casting technology, which is widely used in RT, plays an active role in product innovation, shortening development cycle and developing green production. At present, the quality control of VC products mainly depends on artificial experience, low degree of automation, to some extent restricts the rapid development of VC technology. Therefore, the research of VC product quality intelligent control method. It is of great practical significance to change the traditional mode of relying on artificial experience to improve the production efficiency and the ability of new product development in VC field. This paper takes VC forming process as the research object. Taking VC process as the main line and improving the quality of VC product, based on computer graphics, visualization technology and intelligent control theory, the mechanism of VC forming process is studied. This paper summarizes the quality defects and the causes of forming defects in VC products, and analyzes the key process parameters that affect the quality of VC products. The method of obtaining geometric characteristics of die cavity is studied, and a method of obtaining geometric information of die cavity based on product STL model is established. On this basis, the intelligent control method of product quality is studied, and case Based Reasoning based on case-based reasoning is established. The intelligent control model of product quality based on CBR and rule-based reasoning rule Based reasoning (RBR); Finally, according to the theory, method and control technology, establish VC product quality intelligent control system, and test the correctness and effectiveness of the above theory and method. This paper provides a feasible method for realizing the intelligent decision and quality control of VC products. The main research contents of this paper are as follows:. 1. The VC forming process mainly depends on the experience of the staff. This paper analyzes the common quality defects of VC products and the forming process mechanism of VC products. The key factors affecting product quality and the problems to be solved urgently are described. 2. The method of obtaining geometric features of die is studied, and an algorithm of inverse geometric intersection is proposed. Through the rapid delamination and discretization of the product STL model, a voxel model describing the mold cavity is constructed, and the volume of the product is obtained on the basis of the model. Surface area, average wall thickness and other die cavity geometry information provide a feasible method for the rapid acquisition of VC product geometry information. 3. The quality of VC products depends on the designer experience control. The problem of poor product quality stability and high cost. Taking the historical case as the support, summarizing the staff's knowledge and experience, adopting the reasoning method of the combination of CBR and RBR. A hybrid intelligent decision model describing VC forming process and quality control is established to realize the intelligent correction of VC product defects. Provide an effective method for product quality intelligent control. 4. Based on product quality intelligent control model, under the environment of Microsoft Visual Studio 2010. A product quality intelligent control system combined with CBR and RBR is developed, and the forming test of an electrical box lid is carried out to verify the correctness and validity of the above theory and method.
【學位授予單位】:河南科技大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TQ320.52;TP391.73
【參考文獻】
相關期刊論文 前10條
1 陳永強;;基于CBR技術的數(shù)控機床故障診斷專家系統(tǒng)[J];西昌學院學報(自然科學版);2016年01期
2 吳耕宇;潘懋;郭艷軍;;利用幾何求交實現(xiàn)三角網(wǎng)格模型快速體素化[J];計算機輔助設計與圖形學學報;2015年11期
3 王乾;;基于Moldflow的多筋類塑件注塑成型參數(shù)優(yōu)化[J];輕工機械;2015年04期
4 徐志欣;路平;舒揚;;兩種環(huán)境友好材料注射成型過程的模擬[J];工程塑料應用;2015年07期
5 徐保友;王森;馮維華;楊衛(wèi)國;;基于專家系統(tǒng)的電能質(zhì)量監(jiān)測與控制平臺[J];現(xiàn)代建筑電氣;2015年03期
6 范亞博;李江平;張鵬飛;;Moldflow在汽車內(nèi)飾板注塑成型工藝參數(shù)優(yōu)化中的應用[J];塑料科技;2015年02期
7 劉朝福;劉建偉;何玉林;;基于正交試驗的PP車門內(nèi)飾板注塑工藝參數(shù)優(yōu)化[J];合成樹脂及塑料;2015年01期
8 劉其洪;廖弘毅;;旋轉(zhuǎn)機械振動故障診斷專家系統(tǒng)[J];計算機測量與控制;2014年12期
9 徐元浩;殷國富;許德幫;遲文俊;;基于CBR的機床導軌智能設計研究[J];西南大學學報(自然科學版);2014年12期
10 王虹;;皂盒注塑模具設計[J];民營科技;2014年09期
相關博士學位論文 前2條
1 高月華;基于kriging代理模型的優(yōu)化設計方法及其在注塑成型中的應用[D];大連理工大學;2009年
2 林獻坤;支持合弄結(jié)構(gòu)的數(shù)控加工智能控制系統(tǒng)的關鍵技術研究[D];同濟大學;2007年
相關碩士學位論文 前10條
1 高國慶;基于故障樹的自適應光學電控系統(tǒng)故障診斷專家系統(tǒng)的研究[D];中國科學院研究生院(光電技術研究所);2016年
2 蔣紀委;基于智能算法的氣體輔助注塑成型工藝參數(shù)優(yōu)化的研究[D];吉林大學;2014年
3 林曉林;基于多智能體的注塑模具方案智能化設計研究[D];大連理工大學;2013年
4 任楠楠;離子液體體系密度、粘度及表面張力的測定及研究[D];北京化工大學;2013年
5 李新;基于動態(tài)模擬的專家系統(tǒng)及其在合成氨合成中的應用[D];青島科技大學;2013年
6 鄭主宜;分子結(jié)構(gòu)對水性聚氨酯粘結(jié)性能的影響[D];中北大學;2013年
7 楊威;基于機器視覺的注塑過程檢測技術[D];華中科技大學;2013年
8 石波;精密注塑成型制品質(zhì)量在線控制研究[D];華南理工大學;2012年
9 王珂;智能選材系統(tǒng)的研究實現(xiàn)[D];北京交通大學;2012年
10 段飛;聚氨酯彈性體模塑成型收縮規(guī)律的可視化實驗研究[D];大連理工大學;2012年
,本文編號:1481004
本文鏈接:http://www.sikaile.net/kejilunwen/ruanjiangongchenglunwen/1481004.html