淤地壩系對(duì)流域水沙動(dòng)力過程調(diào)控作用與模擬研究
本文選題:淤地壩系 切入點(diǎn):MIKE模型 出處:《西安理工大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:淤地壩系在黃土高原水土保持生態(tài)建設(shè)中發(fā)揮著重要作用,科學(xué)認(rèn)識(shí)淤地壩系對(duì)流域水沙過程的影響,對(duì)保障淤地壩系安全運(yùn)行、維護(hù)黃土高原生態(tài)安全具有重要意義。本研究以陜西省綏德縣王茂溝流域?yàn)檠芯繉?duì)象,采用統(tǒng)計(jì)分析、原型觀測(cè)及數(shù)值模擬等手段,研究了壩地土壤水分分布規(guī)律,分析了淤地壩系對(duì)溝道侵蝕動(dòng)力過程的調(diào)控作用,闡明了淤地壩系調(diào)蓄徑流、攔泥減沙的作用機(jī)理。取得的主要結(jié)論如下:(1)壩地的分層淤積結(jié)構(gòu)具有明顯的阻水作用,使土壤水分呈層狀分布。壩地表層(0-20 cm) 土壤水分空間分布均屬于中等變異,0-240 cm 土層土壤平均含水量變化范圍為9.92%-23.70%,隨深度的增加,土壤平均含水量表現(xiàn)為先減小后增大;壩地土壤水分在空間上具有明顯的分層現(xiàn)象,且壩前各層土壤含水量均明顯高于壩中和壩尾,在時(shí)間上屬于中等變異;MIKE SHE模型很好地模擬了壩地土壤水分的層狀分布,在壩地分層土壤結(jié)構(gòu)中,質(zhì)地較細(xì)的泥沙層持水能力強(qiáng)于質(zhì)地較粗的泥沙層,細(xì)顆粒泥沙含水量明顯高于粗顆粒泥沙。(2)基于MIKE SHE和MIKE 11耦合建立的流域水文模型可以較好地模擬黃土高原小流域次暴雨洪水過程。模擬結(jié)果表明,淤地壩系建設(shè)使洪峰減小65.34%,洪量減少58.67%,洪水過程坦化;骨干壩、中型壩和小型壩的建設(shè)分別使洪峰減小27.28%、33.39%、40.13%,洪量減少2.18%、27.08%、44.89%;串聯(lián)、并聯(lián)、混聯(lián)三種壩系級(jí)聯(lián)方式分別使洪峰減小64.30%、75.38%、83.31%,洪量減少37.52%、50.88%、52.68%;淤地壩建設(shè)改變了洪水歷時(shí),骨干壩和中型壩的建設(shè)增加洪水歷時(shí),而小型壩縮短洪水歷時(shí)。并聯(lián)壩系不會(huì)改變洪峰出現(xiàn)時(shí)間,串聯(lián)和混聯(lián)壩系使洪峰滯后10min出現(xiàn),串聯(lián)壩系減小了洪水歷時(shí),并聯(lián)和混聯(lián)壩系增加了洪水歷時(shí)。(3)淤地壩系明顯改變了壩前壩后的水動(dòng)力過程,降低了溝道徑流侵蝕動(dòng)力。骨干壩、中型壩、小型壩的修建使壩前的流速、徑流剪切力、徑流功率、單位水流功率等水動(dòng)力參數(shù)急劇減小;不同壩型對(duì)壩后水動(dòng)力過程影響不同,其中骨干壩后各水動(dòng)力參數(shù)減幅相對(duì)較小。壩系建設(shè)改變了溝道侵蝕動(dòng)力的空間分布,未建壩時(shí),流域出口的侵蝕動(dòng)力最大,壩系建成后,流域出口的侵蝕動(dòng)力最小,其余壩系布局介于這兩種工況之間。不同壩系級(jí)聯(lián)方式對(duì)流域侵蝕動(dòng)力的調(diào)控作用也不同,串聯(lián)、并聯(lián)、混聯(lián)壩系使流域出口最大流速分別減小57.83%、69.40%、78.35%,最大徑流剪切力分別減小82.23%、90.64%、95.32%,最大徑流功率分別減小92.50%、97.14%、98.99%,其中混聯(lián)壩系的減幅最大。(4)壩系建設(shè)明顯減小了流域的徑流侵蝕功率,減少了流域的輸沙量。溝道未建壩時(shí),流域多條支溝的徑流侵蝕功率大于主溝,主溝沿程徑流侵蝕功率大致介于2×10-4m4/(s.km2)~5×10-4m4/(s.km2)之間;壩系建成后,流域的徑流侵蝕功率明顯減小,徑流侵蝕功率從主溝上游到下游表現(xiàn)為先減小后增大的趨勢(shì)。與流域不建壩相比,建設(shè)骨干壩、中型壩、小型壩分別使輸沙模數(shù)減少24.74%、47.11%和64.11%,其中小型壩減幅最大,壩系全部建成后流域輸沙模數(shù)減少比例最大,達(dá)83.92%。
[Abstract]:Warping dam system plays an important role in the ecological construction of soil and water conservation in the Loess Plateau, the scientific understanding of the impact of runoff and sediment process of warping dam system, to ensure the safe operation of warping dam system, plays an important role in maintaining ecological security of the Loess Plateau. Based on the case study of Suide County of Shaanxi Province Wang Mao Gou basin as the research object, by using statistical analysis, prototype observation and numerical simulation, study the distribution of soil water dam, analyzed control effect of Warping Dam System on gully erosion dynamic process, the warping dam system of runoff regulation, mechanism of sediment and sediment. The main results are as follows: (1) stratified structure with water silt dam resistance obviously, the soil moisture distribution is layered. The dam surface (0-20 cm) spatial distribution of soil moisture variations are moderate, 0-240 cm soil water content is 9.92%-23.70%, with the The increase of depth, the average soil water content showed decreased first and then increased; the soil moisture had obvious stratification in space, and each layer of soil moisture before the dam dam and dam were significantly higher than the tail, a moderate variation in time; MIKE SHE model is better to simulate the layered distribution of dam soil moisture in the dam, layered soil structure, fine texture of the mud sand strong water holding capacity in sediment layer of coarse texture, fine sediment water content was significantly higher than that of coarse sediment. (2) the establishment of MIKE SHE and MIKE 11 watershed hydrological model based on coupling can be used to simulate the process of small watershed in the Loess Plateau rainstorm flood. The simulation results show that the warping dam system construction so that the peak is reduced by 65.34%, 58.67% reduction in volume, flood Tanzania; Key Dam, dam construction of medium and small dam respectively. The peak is reduced by 27.28%, 33.39%, 40.13%, 2.1 reduction in volume 8%, 27.08%, 44.89%; series, parallel, hybrid three cascade dam system respectively. The peak is reduced by 64.30%, 75.38%, 83.31%, 50.88%, volume decreased by 37.52%, 52.68%; the dam construction changed the flood duration, the construction of key dams and medium-sized dams increase flood duration, and shorten the duration of flood. The dam type small shunt the dam system will not change the flood peak time series, and hybrid dam system make the peak lag 10min series, the dam system reduces the flood duration, parallel connection of dam system increases the duration of flood. (3) warping dam system significantly changed before the dam dam after water dynamic process, reducing the channel runoff erosion power. Key Dam, medium small dam, dam construction of the dam before the runoff shear stress, flow rate, runoff power, unit flow power and other hydrodynamic parameters decrease rapidly; different dam type has different effects on the dynamic process of water dam, the dam after the bone dry hydrodynamic parameters relative reduction Small. Dam construction changed gully erosion dynamic spatial distribution, no dam, basin outlet erosion dynamic maximum dam system after the completion of the watershed outlet erosion power minimum, the other dam system layout between these two conditions. The effects of different methods on the cascade dam system of erosion power is also different. Series, parallel, hybrid dam system make the basin outlet maximum velocity is decreased by 57.83%, 69.40%, 78.35%, the maximum runoff shear stress was reduced by 82.23%, 90.64%, 95.32%, the maximum runoff power is decreased by 92.50%, 97.14%, 98.99%, the hybrid dam is the largest reduction. (4) construction of dam system significantly reduces the power erosion basin runoff, reduce the amount of sediment in the river channel. Without dam, runoff many branch ditch erosion power is greater than the main channel, the main Gouyan process of runoff erosion power roughly between 2 * 10-4m4/ (s.km2) ~ 5 * 10-4m4/ (s.km2) between the dam system; After the completion of the watershed runoff erosion power decreases, runoff erosion power from the main channel upstream to downstream is decreased first and then increased. Compared with the river basin dam, the construction of Key Dam, medium small dam dam, respectively. The sediment modulus decreased by 24.74%, 47.11% and 64.11%, of which a small dam the largest reduction, dam system after the completion of the whole sediment modulus decrease the largest proportion, up to 83.92%.
【學(xué)位授予單位】:西安理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:S157.31
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 高海東;賈蓮蓮;李占斌;徐國(guó)策;趙賓華;;基于圖論的淤地壩對(duì)徑流影響的機(jī)制[J];中國(guó)水土保持科學(xué);2015年04期
2 孫佳美;李瀚之;趙陽(yáng);余新曉;常玉;;構(gòu)樹林下枯落物對(duì)坡面流水動(dòng)力學(xué)特性的影響[J];水土保持學(xué)報(bào);2015年03期
3 晏清洪;原翠萍;雷廷武;雷啟祥;張滿良;蘇廣旭;;降水和水土保持對(duì)黃土區(qū)流域水沙關(guān)系的影響[J];中國(guó)水土保持科學(xué);2013年04期
4 夏衛(wèi)兵;;土壤侵蝕降雨物理學(xué)簡(jiǎn)論[J];中國(guó)水土保持科學(xué);2013年02期
5 張永東;吳淑芳;馮浩;原立峰;;土壤侵蝕過程中坡面流水力學(xué)特性及侵蝕動(dòng)力研究評(píng)述[J];土壤;2013年01期
6 劉仁杰;朱紅春;湯國(guó)安;謝軼群;曾瑞安;;基于DEM的黃土坡面流水侵蝕潛能因子初步研究[J];水土保持通報(bào);2012年05期
7 趙海鏡;胡春宏;陳緒堅(jiān);;黃河干流河道輸水量與輸沙量關(guān)系研究[J];水利學(xué)報(bào);2012年04期
8 譚貞學(xué);王占禮;劉俊娥;袁殷;陳浩;王莎;申楠;焦念;;黃土坡面細(xì)溝徑流輸沙對(duì)水動(dòng)力學(xué)參數(shù)的響應(yīng)[J];中國(guó)水土保持科學(xué);2011年05期
9 李君蘭;蔡強(qiáng)國(guó);孫莉英;鄭明國(guó);;坡面水流速度與坡面含砂量的關(guān)系[J];農(nóng)業(yè)工程學(xué)報(bào);2011年03期
10 徐宗學(xué);程磊;;分布式水文模型研究與應(yīng)用進(jìn)展[J];水利學(xué)報(bào);2010年09期
相關(guān)博士學(xué)位論文 前2條
1 楊啟紅;黃土高原典型流域土地利用與溝道工程的徑流泥沙調(diào)控作用研究[D];北京林業(yè)大學(xué);2009年
2 徐向舟;黃土高原溝道壩系攔沙效應(yīng)模型試驗(yàn)研究[D];清華大學(xué);2005年
相關(guān)碩士學(xué)位論文 前1條
1 鄭良勇;黃土地區(qū)陡坡水蝕動(dòng)力過程試驗(yàn)研究[D];西北農(nóng)林科技大學(xué);2003年
,本文編號(hào):1578064
本文鏈接:http://www.sikaile.net/kejilunwen/nykj/1578064.html