隨機(jī)激勵(lì)下具有粘滑效應(yīng)的振動(dòng)系統(tǒng)的近似解析方法
發(fā)布時(shí)間:2022-02-13 14:06
具有粘滑效應(yīng)的振動(dòng)系統(tǒng)廣泛存在于各種工程結(jié)構(gòu)中,工程結(jié)構(gòu)往往伴隨著各種隨機(jī)激勵(lì),為了能更好地控制粘滑效應(yīng)的危害甚至利用該機(jī)制,很有必要研究具有粘滑效應(yīng)的非線性振子在隨機(jī)激勵(lì)下的響應(yīng),論文選題有著重要的理論意義以及很好的工程應(yīng)用前景。本文以受高斯白噪聲激勵(lì)的具有粘滑效應(yīng)的單自由度彈簧-阻尼-質(zhì)量-傳送帶系統(tǒng)為研究對(duì)象,并考慮弱阻尼弱激勵(lì)情形。為對(duì)該系統(tǒng)進(jìn)行詳細(xì)的動(dòng)力學(xué)分析,首先考慮該系統(tǒng)無阻尼及無隨機(jī)激勵(lì)的退化系統(tǒng)在不同參數(shù)時(shí)的動(dòng)力學(xué)特性,得到了退化系統(tǒng)的幾種典型運(yùn)動(dòng)形式,并發(fā)現(xiàn)當(dāng)傳送帶速度較大時(shí)粘滯階段所占比例很小,因而在該情形下可用忽略粘滯效應(yīng)的簡(jiǎn)化系統(tǒng)進(jìn)行研究。進(jìn)而我們分別采用等效非線性系統(tǒng)法及隨機(jī)平均法研究了該簡(jiǎn)化系統(tǒng)在隨機(jī)激勵(lì)下的響應(yīng)的近似解析解,表明摩擦力在該系統(tǒng)運(yùn)動(dòng)過程中可等價(jià)為恢復(fù)力與耗散力的共同作用。最后,對(duì)于高斯白噪聲作用下具有粘滑效應(yīng)的非線性系統(tǒng)采用能量包線隨機(jī)平均法得到了它的近似解析解,詳細(xì)討論了系統(tǒng)參數(shù)對(duì)系統(tǒng)響應(yīng)的影響規(guī)律及本文提出的近似解析方法的適用范圍,研究表明傳送帶速度和激勵(lì)強(qiáng)度對(duì)系統(tǒng)響應(yīng)有很大的影響。
【文章來源】:浙江大學(xué)浙江省211工程院校985工程院校教育部直屬院校
【文章頁數(shù)】:80 頁
【學(xué)位級(jí)別】:碩士
【部分圖文】:
鉆柱系統(tǒng)動(dòng)力學(xué)模型[11]
緒論7上,已有許多工作致力于研究這一經(jīng)典模型的動(dòng)力學(xué)行為[53-57];Thomsen和Fidlin[58]利用攝動(dòng)法和標(biāo)準(zhǔn)平均法建立了stick-slip和純滑時(shí)振動(dòng)幅值的解析表達(dá)式,發(fā)現(xiàn)當(dāng)靜摩擦力和動(dòng)摩擦力相差相對(duì)較小時(shí)預(yù)測(cè)結(jié)果與數(shù)值模擬的結(jié)果吻合得很好;Andreaus和Casini[59]用封閉式方法及數(shù)值方法分析了stick-slip振動(dòng)的響應(yīng),并討論了傳送帶速度和摩擦模型對(duì)響應(yīng)的影響;VandeVrande等人[60]計(jì)算了干摩擦自治動(dòng)力學(xué)系統(tǒng)的穩(wěn)定和不穩(wěn)定周期stick-slip振動(dòng),其中不連續(xù)摩擦力用光滑函數(shù)近似;Devarajan和Bipin[61]將Thomsen和Fidlin的工作推廣到杜芬非線性振子并給出了振動(dòng)幅值和頻率的近似解析表達(dá)式。此外,還有許多研究者對(duì)stick-slip振動(dòng)的動(dòng)力學(xué)響應(yīng),分岔和混沌行為進(jìn)行了全面研究[62-67],這里不再一一列出。為了控制粘滑效應(yīng),減少其可能帶來的對(duì)結(jié)構(gòu)的損害以及噪音,研究者們研究了發(fā)生粘滑效應(yīng)的條件,Thomsen[68]研究了高頻激勵(lì)對(duì)stick-slip振動(dòng)的影響,發(fā)現(xiàn)高頻激勵(lì)可以防止自激振蕩的發(fā)生,Won和Chung[69]提出了產(chǎn)生stick-slip振動(dòng)的條件,并發(fā)現(xiàn)當(dāng)阻尼系數(shù)和傳送帶速度超過一定范圍時(shí)stick-slip振動(dòng)消失。許多有效的控制方法也被建立起來,例如比例微分控制[70-71],基于模型的反饋或前饋補(bǔ)償[72-73],脈沖控制[74]等,許多實(shí)驗(yàn)的結(jié)果證明:足夠大的系統(tǒng)剛度或是系統(tǒng)阻尼能夠使系統(tǒng)避免表現(xiàn)出粘滑效應(yīng)[75]。與此同時(shí),也有許多工作致力于利用這一現(xiàn)象進(jìn)行高精度定位和幫助機(jī)器人移動(dòng),比如基于stick-slip的驅(qū)動(dòng)器[76-77],振動(dòng)驅(qū)動(dòng)運(yùn)動(dòng)系統(tǒng)[78-79],蚯蚓機(jī)器人[80]等。圖1.2蚯蚓機(jī)器人[76]
的無量綱方程也可以由方程(2.1a)和(2.1b)來表達(dá),其中 c=0.w(t)省略。3sgn( ) 0 for slipd bX X X X v ( 2.2a)30, , for stickb sX X v X X ( 2.2b)從數(shù)值結(jié)果可知,在一定的系統(tǒng)參數(shù)范圍內(nèi),不論初始狀態(tài)如何,最終穩(wěn)定的動(dòng)力學(xué)系統(tǒng)可以發(fā)現(xiàn)三類動(dòng)力學(xué)行為,如圖 2.2 所示,首先考慮傳送帶順時(shí)針運(yùn)動(dòng),其中非線性剛度系數(shù)設(shè)為 0.1,靜摩擦力為 0.4s ,其他系統(tǒng)參數(shù)在圖2.2 中給出,d 表示動(dòng)摩擦系數(shù),bv 表示傳送帶速度,初始條件是 x(0) 0, x (0) 1.0 。
【參考文獻(xiàn)】:
期刊論文
[1]鉆柱系統(tǒng)黏滑振動(dòng)的自激振動(dòng)特性研究[J]. 湯歷平,祝效華,石昌帥,唐建. 西南石油大學(xué)學(xué)報(bào)(自然科學(xué)版). 2017(04)
[2]非線性隨機(jī)動(dòng)力學(xué)與控制的哈密頓理論框架[J]. 朱位秋,黃志龍,應(yīng)祖光. 力學(xué)與實(shí)踐. 2002(03)
[3]隨機(jī)激勵(lì)的耗散的Hamilton系統(tǒng)理論的研究進(jìn)展[J]. 朱位秋,黃志龍. 力學(xué)進(jìn)展. 2000(04)
[4]帶基礎(chǔ)隔震器結(jié)構(gòu)的Stick-slip運(yùn)動(dòng)模型[J]. 馮奇,張相庭. 同濟(jì)大學(xué)學(xué)報(bào)(自然科學(xué)版). 2000(04)
[5]非線性隨機(jī)振動(dòng)理論的近期進(jìn)展[J]. 朱位秋. 力學(xué)進(jìn)展. 1994(02)
[6]預(yù)測(cè)非線性系統(tǒng)隨機(jī)響應(yīng)的等效非線性系統(tǒng)法[J]. 朱位秋,余金壽. 固體力學(xué)學(xué)報(bào). 1989(01)
[7]隨機(jī)平均法及其應(yīng)用[J]. 朱位秋. 力學(xué)進(jìn)展. 1987(03)
本文編號(hào):3623331
【文章來源】:浙江大學(xué)浙江省211工程院校985工程院校教育部直屬院校
【文章頁數(shù)】:80 頁
【學(xué)位級(jí)別】:碩士
【部分圖文】:
鉆柱系統(tǒng)動(dòng)力學(xué)模型[11]
緒論7上,已有許多工作致力于研究這一經(jīng)典模型的動(dòng)力學(xué)行為[53-57];Thomsen和Fidlin[58]利用攝動(dòng)法和標(biāo)準(zhǔn)平均法建立了stick-slip和純滑時(shí)振動(dòng)幅值的解析表達(dá)式,發(fā)現(xiàn)當(dāng)靜摩擦力和動(dòng)摩擦力相差相對(duì)較小時(shí)預(yù)測(cè)結(jié)果與數(shù)值模擬的結(jié)果吻合得很好;Andreaus和Casini[59]用封閉式方法及數(shù)值方法分析了stick-slip振動(dòng)的響應(yīng),并討論了傳送帶速度和摩擦模型對(duì)響應(yīng)的影響;VandeVrande等人[60]計(jì)算了干摩擦自治動(dòng)力學(xué)系統(tǒng)的穩(wěn)定和不穩(wěn)定周期stick-slip振動(dòng),其中不連續(xù)摩擦力用光滑函數(shù)近似;Devarajan和Bipin[61]將Thomsen和Fidlin的工作推廣到杜芬非線性振子并給出了振動(dòng)幅值和頻率的近似解析表達(dá)式。此外,還有許多研究者對(duì)stick-slip振動(dòng)的動(dòng)力學(xué)響應(yīng),分岔和混沌行為進(jìn)行了全面研究[62-67],這里不再一一列出。為了控制粘滑效應(yīng),減少其可能帶來的對(duì)結(jié)構(gòu)的損害以及噪音,研究者們研究了發(fā)生粘滑效應(yīng)的條件,Thomsen[68]研究了高頻激勵(lì)對(duì)stick-slip振動(dòng)的影響,發(fā)現(xiàn)高頻激勵(lì)可以防止自激振蕩的發(fā)生,Won和Chung[69]提出了產(chǎn)生stick-slip振動(dòng)的條件,并發(fā)現(xiàn)當(dāng)阻尼系數(shù)和傳送帶速度超過一定范圍時(shí)stick-slip振動(dòng)消失。許多有效的控制方法也被建立起來,例如比例微分控制[70-71],基于模型的反饋或前饋補(bǔ)償[72-73],脈沖控制[74]等,許多實(shí)驗(yàn)的結(jié)果證明:足夠大的系統(tǒng)剛度或是系統(tǒng)阻尼能夠使系統(tǒng)避免表現(xiàn)出粘滑效應(yīng)[75]。與此同時(shí),也有許多工作致力于利用這一現(xiàn)象進(jìn)行高精度定位和幫助機(jī)器人移動(dòng),比如基于stick-slip的驅(qū)動(dòng)器[76-77],振動(dòng)驅(qū)動(dòng)運(yùn)動(dòng)系統(tǒng)[78-79],蚯蚓機(jī)器人[80]等。圖1.2蚯蚓機(jī)器人[76]
的無量綱方程也可以由方程(2.1a)和(2.1b)來表達(dá),其中 c=0.w(t)省略。3sgn( ) 0 for slipd bX X X X v ( 2.2a)30, , for stickb sX X v X X ( 2.2b)從數(shù)值結(jié)果可知,在一定的系統(tǒng)參數(shù)范圍內(nèi),不論初始狀態(tài)如何,最終穩(wěn)定的動(dòng)力學(xué)系統(tǒng)可以發(fā)現(xiàn)三類動(dòng)力學(xué)行為,如圖 2.2 所示,首先考慮傳送帶順時(shí)針運(yùn)動(dòng),其中非線性剛度系數(shù)設(shè)為 0.1,靜摩擦力為 0.4s ,其他系統(tǒng)參數(shù)在圖2.2 中給出,d 表示動(dòng)摩擦系數(shù),bv 表示傳送帶速度,初始條件是 x(0) 0, x (0) 1.0 。
【參考文獻(xiàn)】:
期刊論文
[1]鉆柱系統(tǒng)黏滑振動(dòng)的自激振動(dòng)特性研究[J]. 湯歷平,祝效華,石昌帥,唐建. 西南石油大學(xué)學(xué)報(bào)(自然科學(xué)版). 2017(04)
[2]非線性隨機(jī)動(dòng)力學(xué)與控制的哈密頓理論框架[J]. 朱位秋,黃志龍,應(yīng)祖光. 力學(xué)與實(shí)踐. 2002(03)
[3]隨機(jī)激勵(lì)的耗散的Hamilton系統(tǒng)理論的研究進(jìn)展[J]. 朱位秋,黃志龍. 力學(xué)進(jìn)展. 2000(04)
[4]帶基礎(chǔ)隔震器結(jié)構(gòu)的Stick-slip運(yùn)動(dòng)模型[J]. 馮奇,張相庭. 同濟(jì)大學(xué)學(xué)報(bào)(自然科學(xué)版). 2000(04)
[5]非線性隨機(jī)振動(dòng)理論的近期進(jìn)展[J]. 朱位秋. 力學(xué)進(jìn)展. 1994(02)
[6]預(yù)測(cè)非線性系統(tǒng)隨機(jī)響應(yīng)的等效非線性系統(tǒng)法[J]. 朱位秋,余金壽. 固體力學(xué)學(xué)報(bào). 1989(01)
[7]隨機(jī)平均法及其應(yīng)用[J]. 朱位秋. 力學(xué)進(jìn)展. 1987(03)
本文編號(hào):3623331
本文鏈接:http://www.sikaile.net/kejilunwen/lxlw/3623331.html
最近更新
教材專著