大型旋轉(zhuǎn)體表面風(fēng)致振動壓電能量收集研究
[Abstract]:It is a new way to detect typical faults of hoisting system by using wireless sensor nodes to monitor the running state of the key rotating body (drum, wheel) of mine hoisting system. However, the short life of sensor nodes is the bottleneck problem in the application of this method. In order to meet the requirements of power supply and low power consumption for large-scale rotating body surface nodes, the wind-induced vibration piezoelectric energy collection of large-scale rotating body surface is studied in this paper. Firstly, in order to find the installation mode suitable for large-scale rotating body, the fixed mode of piezoelectric wafer and the influence of adjusting mode on its power generation performance are studied. Secondly, in order to supply power to the nodes on the surface of large-scale rotating body, a wind-induced vibration piezoelectric energy collection device is designed, and its feasibility is verified by experiments. Finally, in order to reduce the power consumption of sensor nodes, two efficient energy management strategies are proposed and compared with each other. The concrete work completed in this paper is as follows: (1) the basic theory of piezoelectric materials is introduced, which lays the groundwork for further research. (2) the piezoelectric wafers in cantilever beams are simulated and experimented with software. The power generation performance of the simply supported beam under two fixed modes is analyzed. The effects of the parameters such as the ratio of length to width and the mass of the heavy mass on the natural frequency of piezoelectric wafers under different fixed modes are discussed. The results show that the cantilever beam fixing mode is suitable for wind-induced vibration piezoelectric energy collection device on the surface of large-scale rotating body. (3) combined with the operation condition of large-scale rotating body, A piezoelectric energy collection device for wind-induced vibration using Karman vortex street effect is designed. The variation of the generator voltage under the conditions of rotating speed, diameter of barrier, fixed angle and so on is obtained. The stress distribution and the maximum stress change with different rotational speed and the diameter of the barrier are obtained through the stress analysis of the piezoelectric chip with ANSYS software. The stress distribution of the piezoelectric piece in the working state and the variation of the maximum stress with different speed and the diameter of the barrier are obtained. According to the theoretical model and the motion parameters of the drum of mine hoist, an experimental platform of wind-induced vibration piezoelectric energy collection device is set up, and the corresponding experiments are carried out in combination with the theoretical analysis. The results show that when the rotational speed of the rotating body reaches 145r/min, the designed energy collecting device can produce the power output of about 1mW. Compared with adjusting the diameter of cylindrical barrier, adjusting the installation angle of the device can increase the output power of the energy collection device more effectively. (4) the energy consumption management requirements of the sensor nodes for large-scale rotary body surface monitoring are analyzed. An active frequency modulation strategy based on signal amplitude detection and a passive frequency modulation strategy adapted to the running state of a large rotating body are proposed, and the performance of the two strategies is analyzed through a comparative test. The results show that both strategies can achieve power management, and when the transmission frequency is up to 50Hz, the node power consumption of passive FM strategy is 6.8% less than that of active FM strategy.
【學(xué)位授予單位】:中國礦業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TD633
【參考文獻】
相關(guān)期刊論文 前10條
1 蕭如珀;楊信男;;1880年3月:居里兄弟發(fā)現(xiàn)了壓電現(xiàn)象[J];現(xiàn)代物理知識;2015年02期
2 陳文藝;孟愛華;劉成龍;;微型振動能量收集器的研究現(xiàn)狀及發(fā)展趨勢[J];微納電子技術(shù);2013年11期
3 陳勇;丁杰雄;;電磁型振動能量收集器研究及發(fā)展現(xiàn)狀[J];微納電子技術(shù);2012年08期
4 裴先茹;高海榮;;壓電材料的研究和應(yīng)用現(xiàn)狀[J];安徽化工;2010年03期
5 閔強利;;低雷諾數(shù)卡門渦街數(shù)值模擬[J];四川兵工學(xué)報;2009年11期
6 王思瑩;賈來兵;尹協(xié)振;;柔性物體在卡門渦街中的運動和受力分析[J];科學(xué)通報;2008年22期
7 James M.Gilbert;Farooq Balouchi;;Comparison of Energy Harvesting Systems for Wireless Sensor Networks[J];International Journal of Automation & Computing;2008年04期
8 蓋學(xué)周;;壓電材料的研究發(fā)展方向和現(xiàn)狀[J];中國陶瓷;2008年05期
9 闞君武;唐可洪;王淑云;楊志剛;賈杰;曾平;;壓電懸臂梁發(fā)電裝置的建模與仿真分析[J];光學(xué)精密工程;2008年01期
10 尹奇異;廖運文;賃敦敏;肖定全;;無鉛壓電陶瓷的器件應(yīng)用分析[J];壓電與聲光;2006年02期
相關(guān)博士學(xué)位論文 前4條
1 吳寅;采用環(huán)境能量的自供電無線傳感器網(wǎng)絡(luò)關(guān)鍵技術(shù)研究[D];南京航空航天大學(xué);2013年
2 時運來;新型直線超聲電機的研究及其在運動平臺中的應(yīng)用[D];南京航空航天大學(xué);2012年
3 劉爽;鋯鈦酸鉛(PZT)陶瓷材料相關(guān)技術(shù)與應(yīng)用研究[D];中國科學(xué)技術(shù)大學(xué);2009年
4 葉蕓;聚偏氟乙烯薄膜及超薄膜的制備及特性研究[D];電子科技大學(xué);2007年
相關(guān)碩士學(xué)位論文 前7條
1 黃玲花;面向提升機滾筒應(yīng)力檢測傳感器節(jié)點的風(fēng)致振動壓電能量收集技術(shù)[D];中國礦業(yè)大學(xué);2014年
2 許穎穎;懸臂梁壓電發(fā)電裝置的結(jié)構(gòu)設(shè)計與研究[D];揚州大學(xué);2012年
3 黃鑫;壓電復(fù)合材料性能參數(shù)預(yù)測[D];蘭州理工大學(xué);2010年
4 袁秋潔;基于壓電材料的振動能量收集理論及其結(jié)構(gòu)分析[D];華北電力大學(xué)(北京);2010年
5 王佳;PZT壓電陶瓷制備工藝及性能研究[D];哈爾濱理工大學(xué);2009年
6 佟剛;壓電發(fā)電及自供能裝置的研究[D];吉林大學(xué);2007年
7 辛雪花;壓電振子發(fā)電的基本特性及試驗研究[D];吉林大學(xué);2006年
,本文編號:2459758
本文鏈接:http://www.sikaile.net/kejilunwen/kuangye/2459758.html