滾筒式采煤機(jī)故障診斷研究
[Abstract]:The key equipment in coal production is shearer, whose structure is complex, and it works in the downhole where the environment is bad, so its electrical, hydraulic and other systems have a high failure rate. After investigating dozens of coal enterprises in Shenmu City, Shaanxi Province, they know that the fault diagnosis of coal mining equipment is very backward now. It mainly relies on traditional experience to judge the problems that appear. Its accuracy and efficiency cannot be guaranteed, and the degree of automation is low. It has become an important bottleneck in the development of coal industry, so it is of practical significance and practical value to study the fault diagnosis method of shearer. In this paper, the neural network model, overall structure, training algorithm and steps for fault diagnosis of shearer are studied. The optimal learning algorithm (ELM algorithm) is put forward, and the fault diagnosis model of BP neural network for shearer rolling bearing is established. The diagnostic error of MATLAB was studied. Based on expert system and fuzzy neural network, the fault diagnosis method of shearer based on hybrid intelligent algorithm is studied, and the diagnosis sample and model of overheating fault of hydraulic traction device system of shearer are established. The single adaptive BP network algorithm and fuzzy BP network algorithm are used for fault diagnosis, and the diagnosis error and training speed are compared and analyzed. The main results of this paper are as follows: 1. The fault diagnosis method of shearer based on neural network adopts the optimal learning algorithm (ELM algorithm) to avoid the shortcomings of the feedforward neural network algorithm such as large error and weight norm, and to improve the generalization of fault diagnosis network. 2. After six cycles training, the fault diagnosis model of BP neural network of shearer rolling bearing reaches the target error, and the diagnostic error is less than 0.01, which shows that the fault diagnosis method based on BP neural network is feasible and efficient. The model error of overheating fault diagnosis of hydraulic traction device of shearer is 0.001. The training sample of fuzzy module adaptive BP network algorithm is only 1500 iterations, and the adaptive BP network algorithm must be iterated 3500 times. The former fault diagnosis efficiency is higher. 4. In the case of the same sample training, the fault diagnosis method of shearer based on hybrid intelligent algorithm has less error and better adaptability. The fault diagnosis method of shearer based on hybrid intelligent algorithm optimizes the diagnosis effect of the whole fault diagnosis system.
【學(xué)位授予單位】:西北農(nóng)林科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TD421.61;TP183
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李峗恒;馬憲民;陳恒;王培科;;基于BP神經(jīng)網(wǎng)絡(luò)的采煤機(jī)搖臂異聲故障診斷技術(shù)研究[J];煤礦機(jī)械;2015年03期
2 周遠(yuǎn)航;姚新港;;基于BP神經(jīng)網(wǎng)絡(luò)的采煤機(jī)健康管理系統(tǒng)[J];制造業(yè)自動(dòng)化;2014年06期
3 聶海強(qiáng);;溫室環(huán)境控制方法研究[J];電子世界;2013年22期
4 楊文光;高艷輝;王清;;模糊前向神經(jīng)網(wǎng)絡(luò)在瓦斯涌出量預(yù)測(cè)中的應(yīng)用[J];安徽大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年06期
5 任金霞;郭浩洋;;基于RBF-FNN的網(wǎng)絡(luò)擁塞控制研究[J];數(shù)字技術(shù)與應(yīng)用;2013年09期
6 劉緒金;李建平;杜長龍;胡正偉;;采煤機(jī)模糊神經(jīng)網(wǎng)絡(luò)故障診斷專家系統(tǒng)仿真[J];煤礦機(jī)械;2011年04期
7 蘇秀平;李威;王禹橋;張麗麗;;自組織競(jìng)爭(zhēng)神經(jīng)網(wǎng)絡(luò)在采煤機(jī)煤巖界面模式識(shí)別中的應(yīng)用[J];礦山機(jī)械;2010年15期
8 王玉萍;宋瑩瑩;;采煤機(jī)調(diào)高系統(tǒng)的模糊神經(jīng)網(wǎng)絡(luò)自適應(yīng)控制[J];煤礦機(jī)械;2009年08期
9 胡俊;張世洪;汪崇建;;采煤機(jī)故障診斷技術(shù)現(xiàn)狀及其發(fā)展趨勢(shì)[J];煤礦機(jī)械;2008年09期
10 付家才;李浩;郭勇;;神經(jīng)網(wǎng)絡(luò)在采煤機(jī)故障診斷專家系統(tǒng)中的應(yīng)用[J];黑龍江科技學(xué)院學(xué)報(bào);2007年05期
相關(guān)碩士學(xué)位論文 前5條
1 蔣超;模糊神經(jīng)網(wǎng)絡(luò)在采煤機(jī)故障診斷中的應(yīng)用[D];河北工程大學(xué);2014年
2 彭學(xué)前;采煤機(jī)故障診斷與故障預(yù)測(cè)研究[D];南京理工大學(xué);2013年
3 何偉;模糊神經(jīng)網(wǎng)絡(luò)在交通流量預(yù)測(cè)中的應(yīng)用研究[D];蘭州交通大學(xué);2012年
4 李軍;改進(jìn)的BP算法在汽輪機(jī)熱力系統(tǒng)故障診斷與預(yù)測(cè)中的應(yīng)用研究[D];重慶大學(xué);2004年
5 熊浩;電站鍋爐故障診斷與預(yù)測(cè)研究[D];重慶大學(xué);2003年
,本文編號(hào):2423697
本文鏈接:http://www.sikaile.net/kejilunwen/kuangye/2423697.html