基于Schwarz重疊型區(qū)域分解的大地電磁二維正演研究
[Abstract]:Domain decomposition algorithm has become a powerful method to solve large scale complex numerical problems by transforming large scale problems into some small problems and greatly reducing the scale of computation and saving memory space. In this paper, the (MT) two-dimensional forward modeling of magnetotelluric method is taken as an example, the two-dimensional solution region is divided into several overlapping subdomains, the subdomains are discretized by the finite difference method and the LU direct decomposition method is used to solve them independently. Then the Schwarz alternating method is used to transfer and update the solution of overlapped region, thus the two-dimensional forward numerical simulation of magnetotelluric method is realized. Numerical simulation experiments on typical low-resistivity geoelectric models show that the proposed algorithm is accurate and feasible compared with the traditional global forward algorithm, and can greatly save computer memory and reduce CPU computing time. In addition, the study on the effect of overlapping region algorithm shows that the memory required by this algorithm decreases with the number of overlapping subfields, and the CPU computing time decreases first and then increases with the number of overlapping subfields. The combination of overlapping subdomains and the size of overlapped subdomains have a certain effect on the calculation efficiency, which need to be optimized reasonably. Therefore, the algorithm presented in this paper provides a new idea for the forward inversion of electromagnetic method for three dimensional large scale problems.
【作者單位】: 東華理工大學(xué)放射性地質(zhì)與勘探技術(shù)國防重點(diǎn)學(xué)科實(shí)驗(yàn)室;
【基金】:國家青年基金項(xiàng)目(41404057) 國家自然科學(xué)基金項(xiàng)目(41164003,41674077)聯(lián)合資助
【分類號(hào)】:P631.325
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 ;Multisplitting and Schwarz Methods for Solving Linear Complementarity Problems[J];Numerical Mathematics A Journal of Chinese Universities(English Series);2006年04期
2 ;Laboratory named after late Prof.Uli Schwarz[J];Bulletin of the Chinese Academy of Sciences;2009年01期
3 ;A Note on Schwarz-Pick Estimate[J];Chinese Annals of Mathematics(Series B);2010年03期
4 ;Monotone Additive Schwarz Algorithms for Solving Two-Side Obstacle Problems[J];Wuhan University Journal of Natural Sciences;1996年Z1期
5 王亞紅;解非線性單調(diào)問題的Schwarz算法[J];湖南大學(xué)學(xué)報(bào)(自然科學(xué)版);1997年02期
6 李宏偉;橢圓型偏微分方程的加法Schwarz方法[J];數(shù)值計(jì)算與計(jì)算機(jī)應(yīng)用;2003年01期
7 曾金平,周茵;解非線性方程組的一類多重分裂加性Schwarz算法[J];湖南大學(xué)學(xué)報(bào)(自然科學(xué)版);2004年03期
8 黃小軍;沈良;顧永興;;Schwarz引理的一個(gè)注記(英文)[J];數(shù)學(xué)進(jìn)展;2008年02期
9 尚月強(qiáng);何銀年;;Fourier analysis of Schwarz domain decomposition methods for the biharmonic equation[J];Applied Mathematics and Mechanics(English Edition);2009年09期
10 ;Schwarz-Pick estimates for positive real part holomorphic functions on unit ball and polydisc[J];Science China(Mathematics);2010年04期
相關(guān)博士學(xué)位論文 前1條
1 張曉飛;多復(fù)變數(shù)的邊界型Schwarz引理及其應(yīng)用[D];中國科學(xué)技術(shù)大學(xué);2013年
相關(guān)碩士學(xué)位論文 前10條
1 黃會(huì);二階橢圓界面問題的兩水平加性Schwarz方法[D];南京師范大學(xué);2016年
2 查敏;二階橢圓問題弱Galerkin方法的兩水平加性Schwarz預(yù)處理算法[D];南京師范大學(xué);2015年
3 袁鵬;兩類螺線形函數(shù)的亞歷山大變換的Schwarz導(dǎo)數(shù)范數(shù)上界估計(jì)[D];深圳大學(xué);2017年
4 馮昊;兩水平Schwarz算法[D];湖南大學(xué);2007年
5 張利霞;Green-Schwarz弦的守恒流和解變換以及相關(guān)問題的研究[D];西北大學(xué);2008年
6 葉玉其;一類基于Robin界面條件的加性Schwarz算法[D];湖南大學(xué);2006年
7 黃大勇;優(yōu)化施瓦茲方法綜述[D];東北師范大學(xué);2010年
8 陳玲;Circle Packing理論和一般形式Schwarz引理的推廣[D];重慶大學(xué);2011年
9 劉紅梅;無界區(qū)域上的Schwarz交替法[D];合肥工業(yè)大學(xué);2013年
10 袁廣南;求解Helmholtz問題的最優(yōu)Schwarz算法[D];湖南大學(xué);2006年
,本文編號(hào):2401602
本文鏈接:http://www.sikaile.net/kejilunwen/kuangye/2401602.html