天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 礦業(yè)工程論文 >

西藏念青唐古拉古近紀(jì)矽卡巖型鐵銅鉛鋅礦床成因機(jī)制與成礦模式

發(fā)布時(shí)間:2018-06-21 15:57

  本文選題:西藏 + 念青唐古拉 ; 參考:《中國地質(zhì)大學(xué)》2017年博士論文


【摘要】:論文圍繞念青唐古拉鐵銅鉛鋅礦成礦帶東西兩段的典型古近紀(jì)不同礦化類型的矽卡巖礦床(亞貴拉鉛鋅銀鉬、蒙亞啊鉛鋅銀(鉬)、加多捕勒鐵銅、恰功鐵(鉛)礦床為典型礦床)進(jìn)行對比研究,在野外地質(zhì)調(diào)查的基礎(chǔ)上,通過詳細(xì)室內(nèi)觀察分析,系統(tǒng)總結(jié)了念青唐古拉成礦帶內(nèi)古近紀(jì)矽卡巖的礦床地質(zhì)特征和成礦地質(zhì)條件。區(qū)內(nèi)各礦床中的巖漿演化序列主要集中于早白堊世(110-125 Ma),晚白堊世(80-90 Ma),古新世(50-65 Ma),中新世(13-20 Ma)四個(gè)時(shí)期,且以古新世(50-65 Ma)為主。區(qū)內(nèi)矽卡巖Fe-Cu-Pb-Zn礦床蝕變-礦化時(shí)限主要集中于50-65Ma,因此約束了區(qū)內(nèi)的Fe-Cu-Pb-Zn矽卡巖成礦事件主要形成于印亞大陸碰撞初期,是新特提斯洋板片陡深俯沖后折返引發(fā)上部地殼部分熔融的產(chǎn)物。巖石地球化學(xué)特征揭示區(qū)內(nèi)的鉛鋅矽卡巖礦化巖漿源區(qū)主要為中上地殼,而鐵銅矽卡巖礦化多源于下地殼,有較多的幔源物質(zhì)的參與。巖漿演化方面,鉛鋅礦較鐵銅礦而言,成礦巖體具更高的分異特征。詳細(xì)的礦物學(xué)研究顯示加多捕勒Fe-Cu礦床早期銅礦化具有近源高溫特征,晚期具有低溫疊加特征。石榴子石矽卡巖中的硫化物中含有自形粒狀的石榴子石,斑銅礦-黃銅礦組合呈近1:1的固溶體分離結(jié)構(gòu)特征;且斑銅礦中含有大量的Bi(0.41 wt.%),此外在受到熱液蝕變作用后形成了獨(dú)立的含Bi礦物,如硫鉍銅礦,顯示呈固溶體分離結(jié)構(gòu)的黃銅礦-斑銅礦形成于高溫階段,屬于進(jìn)變質(zhì)階段產(chǎn)物。加多捕勒Fe-Cu礦床石榴子石的微量元素,尤其是Sn,顯示從早階段(364-15 ppm)到最晚階段(34-0.14 ppm),暗示在石榴子石演化過程中Sn發(fā)生了分離。結(jié)合磁鐵礦中Sn含量的變化(巖漿磁鐵礦中為7.3-2.7 ppm,南部塊狀磁鐵礦礦石中為71-13ppm,中部含黃銅礦的磁鐵礦中為8.3-3.3 ppm),推測石榴子石中Sn的含量可以反映流體中Fe-Cu元素的分離。亞貴拉Pb-Zn-Ag與Mo礦化為同一成礦作用,與古新世同碰撞背景下由于中上地殼部分熔融形成的巖漿有關(guān),成礦巖體為石英斑巖,成礦流體主要來自于巖漿熱液,沸騰作用是Pb-Zn與Mo礦化沉淀的主要機(jī)制。蒙亞啊Pb-Zn-Ag礦床成礦年齡為53 Ma,目前地表未發(fā)現(xiàn)與成礦相關(guān)的巖體,推測可能在深部或者外圍。熱液受到礦區(qū)普遍發(fā)育的斷裂控制,后受到大氣降水的混合作用而沉淀成礦。加多捕勒Fe、Cu礦化均與黑云母二長花崗巖相關(guān),為同一期熱液作用的產(chǎn)物,顯示Fe、Cu在南北礦段分帶特征,降溫是加多捕勒Fe礦化沉淀的主要因素,早階段Cu礦化具有高溫的特征(400℃),其后流體受到大氣降水混合的影響而致使晚階段銅礦化的疊加;恰功矽卡巖Fe與斷裂控制的熱液脈型Pb礦化為同一期巖漿作用的產(chǎn)物,早階段成礦流體由于壓力的下降,流體發(fā)生液-液不混溶作用,為磁鐵礦的沉淀提供了有利條件;晚階段沸騰作用是遠(yuǎn)端受斷裂控制的Pb礦化沉淀的重要因素。加多捕勒與恰功礦床中不同世代的石榴子石的Eu異常反映了流體鹽度的變化。
[Abstract]:In this paper, the paper revolves around the typical Paleogene different mineralization types of skarn deposits in the two segment of the mineralogical belt of the tangqilan iron copper lead zinc ore belt. The geological features and metallogenic conditions of the Paleogene skarn in the Yuqing Tanggula metallogenic belt are systematically summarized. The magma evolution sequence in the deposits in the area mainly concentrated on the early Cretaceous (110-125 Ma), the late Cretaceous (80-90 Ma), the Paleocene (50-65 Ma), the Miocene (13-20 Ma), and the Palaeocene (50-65 Ma). The alteration mineralization time limit of the skarn Fe-Cu-Pb-Zn deposit is mainly concentrated on the 50-65Ma, so the Fe-Cu-Pb-Zn skarn mineralization in the restricted area is mainly formed in the early stage of the collision in the Indo Asian continent. It is the product of the partial melting of the upper crust caused by the dive deep subduction of the new Tethys oceanic plate. The geochemical characteristics of the rock reveal the lead and zinc silicon in the region. The main source area of the karyan mineralized magma is the middle upper crust, while the iron copper skarn mineralization is mostly derived from the lower crust, with the participation of more mantle derived materials. In terms of the magma evolution, the ore body has higher differentiation characteristics than the iron and copper ore. The detailed mineralogical study shows that the early copper mineralization of the polyshalen Fe-Cu deposit has the characteristics of near source high temperature. The late stage has the characteristics of low temperature superposition. The sulfides in the garnet skarn contain self shaped granite, and the chalcopyrite assemblage of the chalcopyrite is nearly 1:1 solid solution separation structure, and there is a large amount of Bi (0.41 wt.%) in the porphyry copper mine. In addition, a separate Bi mineral, such as bismuth copper ore, is formed after the hydrothermal alteration. The chalcopyrite - porphyry that shows solid solution separation structure is formed at the high temperature stage and belongs to the progressive metamorphic stage. The trace elements of the garnet Fe-Cu deposit, especially the Sn, show that from the early stage (364-15 ppm) to the late stage (34-0.14 ppm), it is suggested that Sn was separated during the evolution of the garnet and Sn contained in magnetite. The variation of the quantity (7.3-2.7 ppm in magmagnetite, 71-13ppm in the massive magnetite ore in the South and 8.3-3.3 ppm in the magnetite with chalcopyrite in the middle is 8.3-3.3 ppm). It is conjectured that the content of Sn in the garnet can reflect the separation of the Fe-Cu elements in the fluid. The magma formed by partial melting of the middle and upper crust, the ore-forming body is quartz porphyry, and the ore-forming fluid is mainly derived from magmatic hydrothermal fluid. The boiling action is the main mechanism of Pb-Zn and Mo mineralization. The metallogenic age of the monya Pb-Zn-Ag deposit is 53 Ma, and at present there is no rock related to the surface of the earth. It is presumed that the hydrothermal solution may be in the deep or peripheral. Fe and Cu mineralization are related to the biotite two feldspar, which is the product of the same phase of hydrothermal fluid, which shows that Fe and Cu are divided into the South and North ore segments, and the cooling is the main factor of adding the Fe mineralized precipitation and the early stage Cu mineralization. The characteristics of the high temperature (400 degrees C), then the fluid is influenced by the mixing of atmospheric precipitation, resulting in the superposition of the late stage copper mineralization; the qigigun skarn Fe and the fracture controlled hydrothermal vein type Pb mineralized as the product of the same phase of magmatism. The early stage ore-forming fluid is due to the decrease of pressure and the fluid liquid immiscibility in the flow body, which is the precipitation extraction of magnetite. Favorable conditions are provided, and the late stage boiling is an important factor for the Pb mineralization controlled by the distal fracture. The Eu anomaly of the garnet in the different generations of the qetruntre and Chia Gong deposits reflects the change of the salinity of the fluid.
【學(xué)位授予單位】:中國地質(zhì)大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:P618.4

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 祝新友;王京彬;王艷麗;陳細(xì)音;;漿液過渡態(tài)流體在矽卡巖型鎢礦成礦過程中的作用——以湖南柿竹園鎢錫多金屬礦為例[J];巖石學(xué)報(bào);2015年03期

2 付強(qiáng);黃克賢;鄭遠(yuǎn)川;楊竹森;段連峰;;西藏蒙亞啊鉛鋅礦床矽卡巖型礦體白云母Ar-Ar年代學(xué)研究及其地球動(dòng)力學(xué)意義[J];地質(zhì)學(xué)報(bào);2015年03期

3 劉鐵庚;葉霖;沈能平;周家喜;;閃鋅礦的Cd含量與顏色關(guān)系[J];礦物學(xué)報(bào);2015年01期

4 朱喬喬;謝桂青;李偉;張帆;王建;張平;于炳飛;;湖北金山店大型矽卡巖型鐵礦石榴子石原位微區(qū)分析及其地質(zhì)意義[J];中國地質(zhì);2014年06期

5 唐菊興;王立強(qiáng);鄭文寶;鐘康惠;;岡底斯成礦帶東段礦床成礦規(guī)律及找礦預(yù)測[J];地質(zhì)學(xué)報(bào);2014年12期

6 王立強(qiáng);林鑫;李壯;張志;康浩然;李海峰;;西藏蒙亞啊鉛鋅礦區(qū)花崗斑巖年代學(xué)、地球化學(xué)及Hf同位素組成特征[J];地質(zhì)學(xué)報(bào);2014年12期

7 胡浩;段壯;LUO Yan;李建威;;鄂東程潮鐵礦床磁鐵礦的微量元素組成及其礦床成因意義[J];巖石學(xué)報(bào);2014年05期

8 于玉帥;楊竹森;孟祥金;田世洪;劉英超;;西藏加多捕勒鐵銅礦床晚白堊世巖漿活動(dòng)成因[J];地質(zhì)與勘探;2014年02期

9 鄧明國;李文昌;溫漢捷;倉福彬;王朋;呂昶良;徐榮;曾磊;劉學(xué)龍;劉偉;尹光侯;;滇西鎮(zhèn)康蘆子園鉛鋅多金屬礦床中薔薇輝石的發(fā)現(xiàn)及找礦意義[J];地質(zhì)通報(bào);2013年11期

10 劉漢彬;金貴善;李軍杰;韓娟;張建鋒;張佳;鐘芳文;郭東僑;;鈾礦地質(zhì)樣品的穩(wěn)定同位素組成測試方法[J];世界核地質(zhì)科學(xué);2013年03期

相關(guān)博士學(xué)位論文 前3條

1 高順寶;西藏岡底斯西段銅鐵多金屬成礦作用與找礦方向[D];中國地質(zhì)大學(xué);2015年

2 張金樹;岡底斯成礦帶東段三大斑巖型礦床地質(zhì)特征及區(qū)域控巖控礦模型研究[D];成都理工大學(xué);2012年

3 費(fèi)光春;西藏洞中拉熱液型鉛鋅礦床成礦作用研究[D];成都理工大學(xué);2010年

,

本文編號:2049362

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/kuangye/2049362.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶016e9***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請E-mail郵箱bigeng88@qq.com