復(fù)采工作面過(guò)空巷(群)頂板煤巖結(jié)構(gòu)及控制
本文選題:復(fù)采 + 空巷 ; 參考:《太原理工大學(xué)》2017年碩士論文
【摘要】:回收遺留在采空區(qū)的優(yōu)質(zhì)資源、實(shí)現(xiàn)對(duì)舊采殘煤的再次利用,對(duì)我國(guó)經(jīng)濟(jì)發(fā)展、資源可持續(xù)利用有重大意義。本文以圣華煤業(yè)3號(hào)煤1301復(fù)采工作面過(guò)空巷為研究背景,結(jié)合圣華煤業(yè)相關(guān)地質(zhì)資料及物探手段對(duì)煤層賦存情況進(jìn)行了分析統(tǒng)計(jì),建立了基于頂板初次垮落和周期垮落兩個(gè)過(guò)程的不同邊界條件的頂板力學(xué)模型,計(jì)算并模擬出了頂板斷裂形式。通過(guò)數(shù)值模擬手段,分析了空巷斷面為65.64′mm和65.68′mm兩種條件下頂板初次垮落步距及位置,以及遺留煤柱隨復(fù)采工作面推進(jìn)過(guò)程中應(yīng)力分布與塑性區(qū)變化。針對(duì)頂板跨巷關(guān)鍵塊B對(duì)復(fù)采工作面支架壓力較大特點(diǎn),提出了超前注漿充填工藝技術(shù)手段,并對(duì)其注漿參數(shù)進(jìn)行了優(yōu)化。其主要工作如下:(1)通過(guò)物探手段測(cè)得復(fù)采區(qū)遺留空巷寬度主要為2~10m,遺留煤柱寬度為4~20m;煤層賦存特征主要分為五種情況,分別是實(shí)體煤狀態(tài),頂煤完好、存在空巷狀態(tài),直接頂完好、頂煤冒落狀態(tài),底煤、頂煤全部采出、直接頂完好狀態(tài),直接頂冒落狀態(tài)。(2)通過(guò)計(jì)算分析了3號(hào)煤基本頂厚度為4.66m,直接頂厚度為16.10m。根據(jù)彈性薄板理論,論證了將圣華煤業(yè)直接頂視為彈性薄板的可能性,為下文分析提供了一定的理論基礎(chǔ)。(3)構(gòu)建了采空區(qū)條件下“煤柱+頂板”系統(tǒng)力學(xué)模型,計(jì)算求得頂板中心撓度公式為,并求得“煤柱+頂板”系統(tǒng)條件下頂板最大撓度較小,復(fù)采區(qū)整體保持穩(wěn)定。(4)構(gòu)建了復(fù)采區(qū)工作面推進(jìn)過(guò)程中初次垮落和周期垮落的頂板邊界條件變化模型,初次垮落過(guò)程中頂板邊界條件從四邊固支、到兩邊簡(jiǎn)支兩邊固支、再到四邊簡(jiǎn)支,所對(duì)應(yīng)的頂板斷裂形式為不對(duì)稱的豎“O—X”型斷裂形式;周期垮落過(guò)程可以將頂板邊界條件看成從一邊簡(jiǎn)支三邊固支、到三邊簡(jiǎn)支一邊固支、再到四邊簡(jiǎn)支的過(guò)程,所對(duì)應(yīng)頂板斷裂形式為不對(duì)稱豎“半X—O”型斷裂形式。與回采實(shí)體煤相比,遺留煤柱和空巷的存在使得頂板中間豎向裂紋出現(xiàn)在偏采空區(qū)側(cè)。(5)通過(guò)FLAC3D數(shù)值模擬比較兩種不同空巷斷面隨工作面推進(jìn)對(duì)遺留煤柱、頂板的影響,有以下結(jié)論:空巷寬度較大時(shí),煤柱塑性區(qū)范圍增加較快,煤柱垂直應(yīng)力的變化體現(xiàn)為煤柱應(yīng)力分布從“馬鞍型”、到“平臺(tái)型”、再到“孤峰型”,并且在工作面向前推進(jìn)的過(guò)程中,應(yīng)力增長(zhǎng)速率加快,尤其是在揭露空巷后,垂直應(yīng)力變化強(qiáng)烈,煤柱出現(xiàn)提前失穩(wěn)現(xiàn)象;空巷寬度的改變導(dǎo)致頂板斷裂時(shí)關(guān)鍵塊B長(zhǎng)度與關(guān)鍵塊C長(zhǎng)度差值變化,且呈正相關(guān)性,即頂板發(fā)生斷裂時(shí),頂板中間豎向裂紋總是偏向于采空區(qū)后方。(6)建立了基于過(guò)空巷條件下的“跨空巷長(zhǎng)關(guān)鍵塊B”力學(xué)模型,計(jì)算求得支架工作阻力明顯高于支架額定工作阻力,此時(shí)容易發(fā)生壓架事故。為了工作面能夠順利過(guò)空巷,提出了對(duì)空巷或空巷冒落區(qū)采取超前注漿充填工藝。提出了充填承載層和截割層概念,理論計(jì)算出承載層厚度為4.5m,截割層厚度為2m;對(duì)承載層的強(qiáng)度要求為2MPa,對(duì)截割層的強(qiáng)度要求為1.5MPa。同時(shí)對(duì)注漿壓力、注漿量、鉆孔角度等參數(shù)進(jìn)行了優(yōu)化。
[Abstract]:It is of great significance to recycle the high quality resources left over in the goaf and realize the reuse of the old residual coal. It is of great significance to the economic development of our country and the sustainable utilization of resources. This paper has carried on the analysis of the coal seam occurrence with the related geological data and geophysical means of Shenghua coal industry 3 coal mine 1301 coal mining face as the research background. The roof mechanics model based on the different boundary conditions of the two processes of the first roof fall and the periodic caving is set up. The roof fracture form is calculated and simulated. Through numerical simulation, the initial caving distance and position of the roof under the two conditions of the 65.64 'mm and 65.68' mm are analyzed. The stress distribution and the plastic zone change in the process of surface propulsion. Aiming at the high pressure characteristics of the support of the key block B for the roof cross section, the advanced grouting technology is proposed and the grouting parameters are optimized. The main work is as follows: (1) the main work of the main work is that the width of the left lane width in the compound mining area is mainly 2~10m, The width of left coal pillar is 4~20m, and the characteristics of coal seam occurrence are mainly divided into five kinds, namely, solid coal state, good top coal and alley state, direct top and top coal caving state, bottom coal and top coal all mining, direct top condition and direct top caving state. (2) through calculation and analysis, the thickness of base top of No. 3 coal is 4.66M, direct top thickness. 16.10m. based on the elastic thin plate theory, the possibility that the direct roof of Shenghua coal industry is considered as an elastic thin plate is demonstrated. (3) a mechanical model of the coal pillar + roof system under the condition of goaf is constructed, and the formula of the roof central flexure is calculated and the "coal pillar + roof" system is obtained. The maximum deflection of the roof is small, and the overall recovery area remains stable. (4) the roof boundary condition change model of the first caving and periodic collapse in the process of the working face of the compound mining area is constructed, and the roof boundary conditions are fixed from four sides to the two sides of the simple support and then to the four side simply supported. The symmetrical vertical "O - X" type of fracture form; the process of periodic caving can be regarded as the roof boundary condition as a simple support from one side to three sides, to the three side simply supported on one side and then to the simple support of the four sides. The corresponding roof fracture form is the asymmetric vertical "half X O" type fracture. The vertical crack in the middle of the roof appears on the side of the partial goaf. (5) through the FLAC3D numerical simulation, the effects of the two different air roadway sections on the left coal pillar and the roof are compared. The following conclusion is that the plastic zone range of the coal pillar increases rapidly when the width of the empty lane is large, and the change of the vertical stress of the coal pillar is reflected in the stress distribution of the coal pillar. The saddle type, to the "platform type", and then to the "solitary peak type", and in the process of advancing front of the work, the stress growth rate is accelerated, especially after the opening of the alley, the vertical stress changes strongly and the coal pillar appears early instability, and the change of the width of the alley leads to the difference between the length of the key block B and the C length of the key block when the roof is broken, and In a positive correlation, when the roof breaks, the vertical crack in the middle roof always tends to the rear of the goaf. (6) a mechanical model of "B" based on the "cross lane length key block" is established under the condition of the over empty lane. The calculation results show that the working resistance of the support is obviously higher than the rated working resistance of the support. At this time, the pressure frame accident is easy to occur. Ahead of the empty alley, we put forward the pre grouting filling process for the empty alley or the empty lane. The concept of filling bearing layer and cutting layer was put forward. The thickness of the bearing layer was 4.5m, the thickness of the cutting layer was 2m; the strength of the bearing layer was 2MPa. The strength of the cutting layer was required for 1.5MPa. at the same time to grouting pressure, grouting amount and drilling angle. The parameters are optimized.
【學(xué)位授予單位】:太原理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TD327.2
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 溫慶華;周海豐;;大采高綜采工作面過(guò)空巷關(guān)鍵技術(shù)研究[J];煤炭工程;2009年01期
2 黃漢富;高冒空巷充填技術(shù)研究[J];礦山壓力與頂板管理;2005年02期
3 周海豐;;大采高綜采面過(guò)平行全長(zhǎng)空巷技術(shù)研究[J];陜西煤炭;2008年06期
4 魏永勝;周海豐;;大采高綜采工作面過(guò)空巷關(guān)鍵技術(shù)研究[J];中國(guó)煤炭工業(yè);2008年12期
5 溫慶華;;神東礦區(qū)綜采工作面過(guò)平行全長(zhǎng)大斷面空巷技術(shù)[J];煤礦開采;2009年02期
6 陳意飛;;陽(yáng)煤二礦綜放面快速過(guò)空巷技術(shù)應(yīng)用[J];陜西煤炭;2012年06期
7 趙洪思,李鳳坡,趙學(xué)政;新邱露天煤礦空巷的探查和處理[J];露天采礦;1991年01期
8 陳偉;露天礦場(chǎng)空巷區(qū)機(jī)械作業(yè)安全厚度的確定[J];露天采礦;1992年01期
9 郭曉彥;;望田煤業(yè)舊采區(qū)域內(nèi)遺留空巷穩(wěn)定性的數(shù)值分析[J];山西煤炭;2014年07期
10 遲國(guó)銘;;補(bǔ)連塔煤礦過(guò)32201工作面空巷的理論分析與計(jì)算[J];陜西煤炭;2005年04期
相關(guān)會(huì)議論文 前1條
1 李煥民;張海波;管學(xué)茂;;綜采工作面空巷新型材料充填試驗(yàn)研究[A];創(chuàng)新發(fā)展——河南省第五屆學(xué)術(shù)年會(huì)論文選集[C];2009年
相關(guān)重要報(bào)紙文章 前1條
1 記者 李兵;矸石不出井 回填采空區(qū)[N];山西日?qǐng)?bào);2011年
相關(guān)碩士學(xué)位論文 前4條
1 張德寶;馬營(yíng)煤礦復(fù)采工作面過(guò)老空巷礦壓顯現(xiàn)特征及關(guān)鍵技術(shù)研究[D];遼寧工程技術(shù)大學(xué);2015年
2 金洋;淺埋煤層過(guò)空巷覆巖運(yùn)移規(guī)律的離散元數(shù)值模擬[D];太原理工大學(xué);2017年
3 郭富利;綜合放工作面空巷圍巖控制理論研究[D];太原理工大學(xué);2003年
4 杜科科;千萬(wàn)噸綜采工作面等壓過(guò)空巷技術(shù)研究[D];山東科技大學(xué);2011年
,本文編號(hào):1971911
本文鏈接:http://www.sikaile.net/kejilunwen/kuangye/1971911.html