局部均勻壓力作用下斜井井壁的受力與變形規(guī)律研究
發(fā)布時間:2018-05-04 11:54
本文選題:斜井 + 井壁; 參考:《中國礦業(yè)大學(xué)》2015年碩士論文
【摘要】:斜井已成為我國西部礦區(qū)礦井建設(shè)的重要開拓方式。在軟弱、富水巖層中,斜井井壁結(jié)構(gòu)易遭受水壓或注漿壓力等局部荷載的作用,進(jìn)而威脅其安全。為此,本文采用數(shù)值計算、模型試驗(yàn)方法,開展了局部均勻壓力作用下的斜井井壁受力與變形規(guī)律的研究。首先,基于典型參數(shù)模型,將井壁劃分為19個局部均勻壓力作用區(qū)域,開展了典型參數(shù)模型論證及單因素循環(huán)數(shù)值計算,結(jié)果表明:井壁和圍巖接觸面的允許拉應(yīng)力影響井壁力學(xué)響應(yīng)參數(shù)的疊加,而其摩擦系數(shù)僅在一定范圍內(nèi)影響井壁力學(xué)響應(yīng)參數(shù)的疊加;井壁力學(xué)響應(yīng)參數(shù)與混凝土彈性模量成線性關(guān)系,與邊墻高度、仰拱半徑、井壁厚度呈非線性關(guān)系。通過井壁典型斷面模型的數(shù)值分析,研究表明:井壁力學(xué)響應(yīng)參數(shù)與荷載呈線性關(guān)系。在井壁與圍巖間允許拉應(yīng)力為零、摩擦系數(shù)小于等于0.25的條件下,依次對井壁十九個區(qū)域分別作用單位荷載,得到了井壁特征點(diǎn)的力學(xué)響應(yīng)參數(shù)數(shù)據(jù)表,并開展了力學(xué)響應(yīng)參數(shù)的疊加分析,結(jié)果表明:同樣寬度的單位荷載作用下,仰拱受力最不利,其中仰拱中部即區(qū)域十九的內(nèi)表面將出現(xiàn)最大環(huán)向應(yīng)力,其次是直墻與頂拱部位。其次,基于典型參數(shù)模型,開展了斜井井壁的極限承載力研究。單因素循環(huán)試驗(yàn)研究表明:井壁極限承載力與混凝土強(qiáng)度、井壁厚度近乎呈線性關(guān)系,與邊墻高度、仰拱半徑呈非線性關(guān)系;谝欢ㄓ绊懸蛩厮介_展了全組合試驗(yàn),得到了井壁極限承載力與混凝土強(qiáng)度、邊墻高度、仰拱半徑、井壁厚度關(guān)系的數(shù)據(jù)表,進(jìn)而對局部荷載分別作用在井壁右直墻、頂拱、仰拱全斷面時的井壁極限承載力開展了對比分析,研究表明:荷載作用在井壁仰拱全斷面時,井壁最易遭受破壞。最后,開展了局部均勻壓力作用下斜井井壁力學(xué)特性的相似模型試驗(yàn)研究,結(jié)果表明:荷載作用區(qū)域,井壁內(nèi)表面主要處于受拉狀態(tài),外表面處于受壓狀態(tài)。以荷載作用在區(qū)域十九(仰拱外表面中間部位)為例,當(dāng)荷載P小于2.95MPa時,井壁處于彈性狀態(tài);當(dāng)荷載達(dá)到5.26MPa時,特征點(diǎn)YZ1、YZ2的環(huán)向應(yīng)變分別達(dá)到143.02??、-1115.75??,此時,井壁失去承載能力。
[Abstract]:Inclined well has become an important development mode of mine construction in western mining area of our country. In weak, water-rich rock formations, the sidewall structure of inclined wells is vulnerable to local loads, such as water pressure or grouting pressure, which threaten its safety. In this paper, numerical calculation and model test method are used to study the stress and deformation of inclined shaft wall under the action of local uniform pressure. Firstly, based on the typical parameter model, the shaft wall is divided into 19 local uniform pressure regions, and the typical parameter model is demonstrated and the single factor cyclic numerical calculation is carried out. The results show that the allowable tensile stress of the contact surface between the wall and surrounding rock affects the superposition of the shaft wall mechanical response parameters, while the friction coefficient only affects the superposition of the shaft wall mechanical response parameters in a certain range. The mechanical response parameters of shaft lining are linearly related to the elastic modulus of concrete and nonlinear to the height of side wall the radius of inverted arch and the thickness of shaft wall. Through numerical analysis of typical cross-section model of shaft lining, it is shown that the mechanical response parameters of shaft lining are linearly related to load. When the allowable tensile stress between the wall and surrounding rock is zero and the friction coefficient is less than 0.25, the mechanical response parameter data table of the characteristic point of the shaft wall is obtained by applying unit load to the 19 areas of the shaft wall in turn. The superposition analysis of mechanical response parameters is carried out. The results show that under the action of the unit load of the same width, the stress of the invert is the most disadvantageous, in which the maximum circumferential stress will appear on the inner surface of the middle part of the invert, that is, region 19. The second is the straight wall and the top arch. Secondly, based on the typical parameter model, the ultimate bearing capacity of inclined shaft lining is studied. The results of single factor cyclic test show that the ultimate bearing capacity of shaft lining is linearly related to the strength of concrete and thickness of shaft wall and nonlinear to the height of sidewall and radius of inverted arch. Based on the full combination test of certain influencing factors, the data table of the relationship between ultimate bearing capacity of shaft wall and concrete strength, sidewall height, radius of inverted arch, thickness of shaft wall is obtained, and then the local load acts on the right straight wall of shaft wall, respectively. A comparative analysis of the ultimate bearing capacity of the shaft wall under the full section of the top arch and the inverted arch is carried out. The results show that the shaft wall is most vulnerable to damage when the load is acting on the full section of the inverted arch of the shaft wall. At last, a similar model test on the mechanical properties of inclined shaft wall under the action of local uniform pressure is carried out. The results show that the inner surface of the shaft wall is mainly in the tensile state and the external surface is in the state of compression in the loading area. Taking the load action in area 19 (the middle part of the outer surface of the inverted arch) as an example, when the load P is less than 2.95MPa, the borehole lining is in elastic state, and when the load reaches 5.26MPa, the circumferential strain of the characteristic point YZ1 / YZ2 reaches 143.02 ~ 1115.75, respectively. At this time, the bore loses its bearing capacity.
【學(xué)位授予單位】:中國礦業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TD262
【參考文獻(xiàn)】
相關(guān)期刊論文 前2條
1 彭躍;王桂林;張永興;施毅;;襯砌背后空洞對在役隧道結(jié)構(gòu)安全性影響研究[J];地下空間與工程學(xué)報;2008年06期
2 王怡;王芝銀;馬蘭平;曾志華;;管道穿越黃土陡坡斜井工程穩(wěn)定性分析[J];巖土力學(xué);2008年S1期
相關(guān)博士學(xué)位論文 前1條
1 陳坤福;深部巷道圍巖破裂演化過程及其控制機(jī)理研究與應(yīng)用[D];中國礦業(yè)大學(xué);2009年
,本文編號:1842955
本文鏈接:http://www.sikaile.net/kejilunwen/kuangye/1842955.html
最近更新
教材專著