新疆某地浸鈾礦山氡的析出特征及輻射劑量分析
本文選題:地浸鈾礦 + 氡析出; 參考:《南華大學》2016年碩士論文
【摘要】:地浸采鈾技術(shù)與傳統(tǒng)鈾礦開采相比,減少了地面污染的尾礦壩和廢石場,具有明顯的環(huán)保優(yōu)勢,但對環(huán)境的影響有其自身的特性,其中地浸采鈾過程中氡氣析出所致的輻射影響不可忽視,給鈾礦工作人員和周圍公眾帶來潛在的輻射風險,照射途徑為空氣吸入內(nèi)照射,形成長期的放射性危害。因此,研究地浸鈾礦氡的析出特征,并分析所致的輻射劑量程度,為地浸鈾礦氡析出輻射防護提供科學依據(jù),對保護環(huán)境、人員健康具有重要的意義。本文以新疆某地浸鈾礦為研究對象,對地浸鈾礦進行環(huán)境空氣中氡濃度、氡析出率調(diào)查和監(jiān)測,掌握氡的析出特征,并采用UAIR-FINE軟件模擬得到了集液池、蒸發(fā)池所致周圍20km范圍內(nèi)各子區(qū)的氡濃度貢獻值分布、公眾個人劑量分布、公眾集體劑量以及5km范圍內(nèi)的公眾個人劑量等值線,分析氡析出對工作人員和周圍公眾的影響。主要研究結(jié)論如下:(1)氡監(jiān)測結(jié)果表明,監(jiān)測值均在有關標準約束值以下,水冶車間二樓氡濃度明顯高于其他樓層,最高達438Bq/m3,主要是吸附塔內(nèi)液體在二樓的流量和含鈾溶液均最多,容易導致氡氣析出;集液池是地浸鈾礦山氡氣析出的主要污染源項,并且溫度升高會促進浸出液表面氡的析出;通過偏安全估算,地浸鈾礦山氡析出量遠小于傳統(tǒng)鈾礦山。(2)估算水冶車間工作人員的最大個人輻射劑量為2.01mSv/a,低于國家標準限值,對工作人員影響不大。(3)氡濃度及劑量分布結(jié)果表明,同一個方位下,隨著距離的增加,氡濃度貢獻值逐漸減小,且在5km內(nèi),濃度下降梯度較大;受風頻影響,公眾劑量等值線在西方向、西北方向比較分散,下降梯度較小;集液池、蒸發(fā)池位于盛行風向的下風向,距離較近的居民點位于上風向,并且下風向的居民點均位于10km以外,鈾礦合理的地理規(guī)劃布局減輕了污染源項對公眾的影響。所致氡濃度貢獻值、公眾個人劑量最大值均出現(xiàn)在集液池的W方位,而所致關鍵居民點的公眾個人劑量最大值位于集液池的E方位、2km~3km的子區(qū),位于A村,為0.00171mSv/a;所致周圍20km范圍內(nèi)的公眾集體劑量為4.55×10-3人·Sv/a,均低于各項標準限值,對公眾影響較小,符合輻射防護要求。(4)針對地浸鈾礦的特點提出了合理的氡析出輻射防護建議。
[Abstract]:Compared with traditional uranium mining, in-situ leaching uranium mining technology has obvious advantages of environmental protection, but has its own characteristics of environmental impact, which reduces the surface pollution of tailings dams and waste quarries. The radiation effect caused by radon precipitation during in-situ uranium leaching can not be ignored, which brings potential radiation risk to uranium mine workers and the surrounding public. The way of exposure is air inhalation internal irradiation, which forms long-term radiation hazard. Therefore, it is of great significance to study the characteristics of radon exhalation in in-situ leaching uranium mine and analyze the radiation dose level, which provides a scientific basis for the radiation protection of radon exhalation in in-situ leaching uranium mine and is of great significance to the protection of environment and the health of personnel. In this paper, the concentration of radon in ambient air and radon exhalation rate are investigated and monitored, the characteristics of radon exhalation are grasped, and the liquid collecting tank is obtained by UAIR-FINE software simulation. The distribution of radon concentration contribution value, public individual dose distribution, public collective dose and public personal dose isoline caused by the evaporation pool in the 20km area around the evaporator were analyzed. The effects of radon emission on the workers and the surrounding public were analyzed. The main conclusions are as follows: (1) the radon monitoring results show that the monitoring values are below the relevant standard constraint values, and the radon concentration on the second floor of the hydrometallurgical workshop is obviously higher than that on the other floors. The maximum is 438Bq / m3, mainly because the liquid in the adsorption tower has the most liquid flow on the second floor and the uranium-containing solution, and the liquid collecting tank is the main source of radon precipitation in the uranium mine mountain, and the increase of temperature will promote the radon release on the surface of leaching solution. Based on the partial safety estimation, radon emission from in-situ leaching uranium mine is much smaller than that from traditional uranium mine.) the maximum personal radiation dose of workers in hydrometallurgical workshop is estimated to be 2.01mSv / a, which is lower than the national standard limit. The results of radon concentration and dose distribution showed that under the same azimuth, the radon concentration contribution value gradually decreased with the increase of distance, and in 5km, the decrease gradient of radon concentration was larger, which was influenced by wind frequency. The isoline of the public dose is scattered in the west direction and the northwest direction, and the descending gradient is smaller; the liquid collecting pool and evaporation pool are located in the downwind direction of prevailing wind direction, and the nearby residential areas are located in the upper wind direction, and all the downwind settlement areas are located outside of 10km. The rational geographical layout of uranium mine mitigates the impact of pollution sources on the public. The maximum value of the individual dose of radon concentration was found in the W direction of the liquid collecting pool, while the maximum value of the individual dose in the key residential area was located in the sub-area of 2km / 3km in E azimuth of the liquid collecting pool and located in village A. For 0.00171 mSv / a, the collective dose in the range of 20km is 4.55 脳 10 ~ (-3) person, which is below the standard limit, and has little influence on the public, and meets the requirements of radiation protection.) in view of the characteristics of in-situ uranium leaching, the paper puts forward reasonable suggestions for the radiation protection of radon exhalation.
【學位授予單位】:南華大學
【學位級別】:碩士
【學位授予年份】:2016
【分類號】:TD868
【參考文獻】
相關期刊論文 前10條
1 孟丹;席萍萍;馬英豪;沈福;傅翠明;張志龍;;鈾礦井中氡及氡子體的測量[J];輻射防護;2015年03期
2 孫娟;連國璽;柏學凱;何占飛;;AERMOD模型在鈾礦冶大氣環(huán)境影響評價中的應用[J];鈾礦冶;2015年01期
3 王文賢;張曉文;徐樂昌;李娟;李密;;鈾礦通風尾氣中氡擴散的Matlab模擬[J];鈾礦冶;2014年03期
4 陳潤羊;花明;李小燕;;鈾礦山環(huán)境影響及其評價指標體系構(gòu)建研究[J];礦業(yè)研究與開發(fā);2013年03期
5 謝東;王漢青;劉澤華;葉勇軍;熊軍;;鈾礦通風尾氣中氣態(tài)放射性核素氡大氣擴散數(shù)值模擬[J];中南大學學報(自然科學版);2013年02期
6 王麗琴;屈喜梅;焦玲;丁艷秋;武權(quán);張仲健;張文藝;;CR-39固體核徑跡探測器蝕刻技術(shù)新進展[J];核技術(shù);2012年11期
7 蘇學斌;杜志明;;我國地浸采鈾工藝技術(shù)發(fā)展現(xiàn)狀與展望[J];中國礦業(yè);2012年09期
8 王孔森;;核電事故中核素氣溶膠煙羽擴散的模擬研究[J];中國安全生產(chǎn)科學技術(shù);2012年03期
9 胡鵬華;李先杰;;我國鈾礦通風降氡現(xiàn)狀分析[J];輻射防護;2011年03期
10 周程;趙福祥;;某廢棄鈾礦區(qū)環(huán)境放射性污染現(xiàn)狀調(diào)查[J];核技術(shù);2011年04期
相關碩士學位論文 前5條
1 鄒兆莊;鈾礦山放射性污染場地修復技術(shù)方法研究[D];核工業(yè)北京地質(zhì)研究院;2015年
2 詹靜;某鈾尾礦庫周邊氡監(jiān)測方法及安全防護距離研究[D];南華大學;2014年
3 李業(yè)強;重慶市主城區(qū)空氣中氡濃度調(diào)查與評價[D];成都理工大學;2010年
4 梅文科;土壤氡發(fā)射系數(shù)的確定及ERS-2氡析出率儀測量方法的研究[D];中國地質(zhì)大學(北京);2006年
5 張兵;放射性物質(zhì)大氣彌散仿真研究[D];哈爾濱工程大學;2004年
,本文編號:1841692
本文鏈接:http://www.sikaile.net/kejilunwen/kuangye/1841692.html