復(fù)雜地質(zhì)體克里金插值算法的研究
本文選題:Delaunay剖分 + Kriging方法; 參考:《中國(guó)石油大學(xué)(華東)》2015年碩士論文
【摘要】:Kriging方法雖然經(jīng)過長(zhǎng)時(shí)間的發(fā)展已經(jīng)趨于成熟。但如何利用Kriging插值技術(shù)更好的實(shí)現(xiàn)復(fù)雜地質(zhì)體的屬性插值,一直是地震勘探專家關(guān)注的重點(diǎn),因此結(jié)合復(fù)雜地質(zhì)體的特點(diǎn)并對(duì)Kriging插值算法在效率和效果方面持續(xù)改進(jìn)一直是地球物理學(xué)家和數(shù)學(xué)家研究的熱點(diǎn)。本文針對(duì)復(fù)雜地質(zhì)體的特點(diǎn),基于Delaunay三角剖分和四面體剖分技術(shù),對(duì)單純的Kriging插值方法進(jìn)行了改進(jìn),并在保持已有樣本點(diǎn)不變的基礎(chǔ)上,通過三角形內(nèi)部分割和插值等手段,加密了樣本點(diǎn)數(shù),改進(jìn)了Kriging插值方法,提高了復(fù)雜地質(zhì)體屬性插值的效率和效果。主要完成了四項(xiàng)工作一.詳細(xì)分析了Delaunay剖分算法,并給出了OK插值方法的理論分析及公式推導(dǎo)。二.結(jié)合復(fù)雜地質(zhì)斷層的一些特點(diǎn),基于Delaunay剖分結(jié)果,推導(dǎo)并實(shí)現(xiàn)了基于三角形的Kriging插值算法,并在此基礎(chǔ)上給出了算法詳細(xì)實(shí)現(xiàn)流程,完成了地質(zhì)層位和復(fù)雜斷層的屬性插值。三.結(jié)合復(fù)雜地質(zhì)體的一些特點(diǎn),基于四面體剖分結(jié)果,推導(dǎo)并實(shí)現(xiàn)了基于四面體的Kriging算法,并在此基礎(chǔ)上給出了算法詳細(xì)實(shí)現(xiàn)流程,完成了復(fù)雜地質(zhì)體的三維屬性插值。四.利用論文研究的算法和部分實(shí)際地震數(shù)據(jù),完成了多塊實(shí)際數(shù)據(jù)的復(fù)雜地質(zhì)體屬性插值,而且插值效果較好,驗(yàn)證了算法的正確性和可行性。
[Abstract]:Although the Kriging method has been developed for a long time, it has become mature. However, how to use Kriging interpolation technology to better realize the attribute interpolation of complex geological bodies has always been the focus of attention of seismic exploration experts. Therefore, combining with the characteristics of complex geological bodies and improving the efficiency and effect of Kriging interpolation algorithm, it has been a hot topic for geophysicists and mathematicians. In this paper, based on Delaunay triangulation and tetrahedron technique, the simple Kriging interpolation method is improved according to the characteristics of complex geological bodies. On the basis of keeping the existing sample points unchanged, the interior segmentation and interpolation of triangles are carried out. The sample number is encrypted and the Kriging interpolation method is improved to improve the efficiency and effect of the complex geological body attribute interpolation. Four major tasks have been completed. The Delaunay partition algorithm is analyzed in detail, and the theoretical analysis and formula derivation of OK interpolation method are given. II. Combined with some characteristics of complex geological faults and based on the results of Delaunay subdivision, a triangle based Kriging interpolation algorithm is derived and implemented. On this basis, the detailed realization flow of the algorithm is given, and the attribute interpolation of geological horizon and complex fault is completed. III. Combined with some characteristics of complex geological bodies and based on the result of tetrahedron, the Kriging algorithm based on tetrahedron is deduced and realized. Based on this, the detailed realization flow of the algorithm is given, and the 3D attribute interpolation of complex geological bodies is completed. IV. Using the algorithm studied in this paper and some of the actual seismic data, the interpolation of complex geological body attributes of many real data is completed, and the interpolation effect is good, which verifies the correctness and feasibility of the algorithm.
【學(xué)位授予單位】:中國(guó)石油大學(xué)(華東)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:P631.4
【參考文獻(xiàn)】
相關(guān)期刊論文 前7條
1 余杰;呂品;鄭昌文;;Delaunay三角網(wǎng)構(gòu)建方法比較研究[J];中國(guó)圖象圖形學(xué)報(bào);2010年08期
2 劉云;夏興東;黃北生;;基于分治算法與逐點(diǎn)插入法的Delaunay三角網(wǎng)建立算法的改進(jìn)[J];現(xiàn)代測(cè)繪;2010年04期
3 何濤;張武;李玲;孫玉秋;;基于距離反比加權(quán)的地層插值方法優(yōu)化研究[J];石油天然氣學(xué)報(bào);2010年02期
4 陳學(xué)工;李源;曹建;肖克炎;;Delaunay三角網(wǎng)剖分的約束邊嵌入改進(jìn)算法[J];計(jì)算機(jī)工程與應(yīng)用;2009年24期
5 關(guān)振群 ,宋超 ,顧元憲 ,隋曉峰;有限元網(wǎng)格生成方法研究的新進(jìn)展[J];計(jì)算機(jī)輔助設(shè)計(jì)與圖形學(xué)學(xué)報(bào);2003年01期
6 凌海濱,吳兵;改進(jìn)的自連接Delaunay三角網(wǎng)生成算法[J];計(jì)算機(jī)應(yīng)用;1999年12期
7 丁永祥,夏巨諶,王英,,肖景容;任意多邊形的Delaunay三角剖分[J];計(jì)算機(jī)學(xué)報(bào);1994年04期
相關(guān)碩士學(xué)位論文 前1條
1 王勇標(biāo);克里金算法的改進(jìn)[D];長(zhǎng)江大學(xué);2012年
本文編號(hào):1817669
本文鏈接:http://www.sikaile.net/kejilunwen/kuangye/1817669.html