基于分步多目標(biāo)優(yōu)化方法的掘進(jìn)機(jī)鏟板參數(shù)優(yōu)化
發(fā)布時(shí)間:2018-04-12 13:25
本文選題:基值歐式距離 + 改進(jìn)粒子群算法。 參考:《機(jī)械強(qiáng)度》2017年03期
【摘要】:針對(duì)傳統(tǒng)及現(xiàn)有一些多目標(biāo)優(yōu)化方法在處理實(shí)際工程優(yōu)化問題時(shí)需要很強(qiáng)的先驗(yàn)認(rèn)識(shí)、質(zhì)量差、脆弱等不足,提出了一種與基值歐式距離最小為準(zhǔn)則的改進(jìn)粒子群算法與灰色決策相結(jié)合的分步多目標(biāo)優(yōu)化方法;并將該方法應(yīng)用于掘進(jìn)機(jī)鏟板參數(shù)多目標(biāo)優(yōu)化,對(duì)優(yōu)化前后鏟板推進(jìn)煤巖進(jìn)行了仿真分析和對(duì)比,取得了良好的優(yōu)化效果,驗(yàn)證了該方法的可行性,為工程實(shí)際中處理多目標(biāo)優(yōu)化問題提供了便利與借鑒。
[Abstract]:In view of the shortcomings of traditional and existing multi-objective optimization methods in dealing with practical engineering optimization problems, such as strong prior understanding, poor quality and fragility, etc.In this paper, an improved particle swarm optimization method based on minimum Euclidean distance is proposed, which is combined with grey decision, and the method is applied to the multi-objective optimization of excavator shovel plate parameters.The simulation analysis and comparison of shovel plate propelling coal and rock before and after optimization are carried out, and good optimization results are obtained. The feasibility of this method is verified, which provides convenience and reference for dealing with multi-objective optimization problem in engineering practice.
【作者單位】: 宿州學(xué)院機(jī)械與電子工程學(xué)院;遼寧工程技術(shù)大學(xué)機(jī)械工程學(xué)院;
【基金】:國家自然科學(xué)基金項(xiàng)目(51304107) 遼寧省教育廳創(chuàng)新團(tuán)隊(duì)項(xiàng)目(LT2013009) 宿州學(xué)院機(jī)械設(shè)計(jì)制造及其自動(dòng)化專業(yè)帶頭人項(xiàng)目(2014XJZY31)資助~~
【分類號(hào)】:TD421.5;TP18
【相似文獻(xiàn)】
相關(guān)碩士學(xué)位論文 前1條
1 王厚昌;選礦全流程綜合生產(chǎn)指標(biāo)動(dòng)態(tài)多目標(biāo)優(yōu)化方法[D];東北大學(xué);2014年
,本文編號(hào):1739934
本文鏈接:http://www.sikaile.net/kejilunwen/kuangye/1739934.html
最近更新
教材專著