擠壓—摩擦式吸能錨桿研究
本文選題:沖擊地壓 切入點(diǎn):吸能 出處:《遼寧工程技術(shù)大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
【摘要】:錨桿支護(hù)是一種“主動(dòng)”支護(hù),是世界各國(guó)礦井中主要的支護(hù)形式。本文針對(duì)傳統(tǒng)煤礦支護(hù)錨桿不具備吸能讓位功能,利用數(shù)值模擬與試驗(yàn)研究交替結(jié)合的方法,研究擠壓-摩擦式吸能錨桿(EEA)的力學(xué)性能。針對(duì)擠壓-摩擦式吸能錨桿的結(jié)構(gòu)形式:包括套筒、碟形錨桿托盤、六角襯里管及無縱肋螺紋鋼樹脂錨桿等構(gòu)件在內(nèi)的機(jī)械裝置,研究了結(jié)構(gòu)方案的可行性。利用數(shù)值模擬軟件ANSYS/LS-DYNA建立了擠壓-摩擦式吸能錨桿吸能構(gòu)件的有限元模型,采用控制變量法,分別研究了各個(gè)構(gòu)件不同尺寸對(duì)吸能效果的影響。研究發(fā)現(xiàn)六角襯里管壁厚、端頭直徑、摩擦柱臺(tái)高度、擠壓圓臺(tái)高度均與呈正相關(guān)關(guān)系;跀(shù)值模擬軟件ANSYS/LS-DYNA研究了動(dòng)載荷作用下配套使用的碟形托盤的力學(xué)特性,發(fā)現(xiàn)采用45#鋼的碟形錨桿托盤對(duì)抗沖擊荷載有一定優(yōu)勢(shì),可作為擠壓-摩擦式吸能錨桿配套使用的托盤;建立了擠壓-摩擦式吸能錨桿的整體有限元模型,研究了它在質(zhì)量塊以一定速度撞擊時(shí)的力學(xué)性能,結(jié)果表明,擠壓-摩擦式吸能錨桿對(duì)抗沖擊荷載有明顯效果,并具有承受多次沖擊的能力。加工了擠壓-摩擦式吸能錨桿實(shí)驗(yàn)室拉伸試驗(yàn)?zāi)P?利用WAW-600C微機(jī)控制電液壓伺服萬(wàn)能試驗(yàn)機(jī)研究了擠壓-摩擦式吸能錨桿中錨桿桿體端頭直徑對(duì)吸能效果的影響。結(jié)果發(fā)現(xiàn)在28mm-29mm的范圍時(shí),端頭直徑對(duì)阻力值影響效果明顯,試驗(yàn)結(jié)果與數(shù)值模擬的結(jié)果保持一致。因此,為保持較為平穩(wěn)的阻力曲線,應(yīng)選取強(qiáng)度較高的端頭材料。擠壓-摩擦式吸能錨桿的研制,通過傳統(tǒng)錨桿與機(jī)械吸能裝置的配合,克服了傳統(tǒng)螺紋鋼錨桿的延展性完全依賴于材料塑性變形的不足,實(shí)現(xiàn)了錨桿的高強(qiáng)度、可延伸的性能。
[Abstract]:Bolt support is a kind of "active" support, which is the main support form in mines all over the world. Aiming at the fact that the traditional coal mine bolting bolt does not have the function of energy absorption and displacement, the method of alternating combination of numerical simulation and experimental research is used in this paper. The mechanical properties of Extrusion-friction Energy absorbing Anchorage (EEAA) are studied. The structural forms of Extrusion-friction Energy Absorber Anchorage (EEAA) are studied. The mechanical devices include sleeve, disc bolt tray, hexagonal lining tube and non-longitudinal ribbed steel resin anchor, etc. The feasibility of the structural scheme is studied. The finite element model of the energy-absorbing member of the extrusion-friction type energy absorption bolt is established by using the numerical simulation software ANSYS/LS-DYNA, and the control variable method is adopted. The effects of different dimensions of each member on the energy absorption efficiency are studied respectively. It is found that the wall thickness of the hexagonal liner, the diameter of the end head, the height of the friction column, Based on the numerical simulation software ANSYS/LS-DYNA, the mechanical properties of the disc tray used under dynamic load are studied, and it is found that the disc anchor tray with 4steel has some advantages in resisting impact load. The whole finite element model of the extrusion-friction energy absorption anchor is established, and its mechanical properties under the impact of the mass block at a certain speed are studied. Extrusion-friction energy absorption anchor has obvious effect on resisting impact load and has the ability to withstand multiple shocks. The laboratory tensile test model of extrusion-friction energy absorption anchor is processed. The influence of the end diameter of the bolt body on the energy absorption effect is studied by WAW-600C microcomputer controlled electro-hydraulic servo universal testing machine. The results show that the effect of the end diameter on the resistance value is obvious in the range of 28mm-29mm. The experimental results are consistent with the results of numerical simulation. Therefore, in order to maintain a more stable resistance curve, a high strength end material should be selected. The development of extrusion-friction energy absorbing anchor rod is carried out through the cooperation of traditional anchor rod and mechanical energy absorption device. The ductility of the traditional rebar anchor is completely dependent on the plastic deformation of the material, and the high strength and extensible properties of the bolt are realized.
【學(xué)位授予單位】:遼寧工程技術(shù)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TD353
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王開松;陳凱;;基于ANSYS的錨桿托盤強(qiáng)度分析及其壓力實(shí)驗(yàn)[J];安徽理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年01期
2 呂祥鋒;潘一山;李忠華;代樹紅;;高速?zèng)_擊作用下錨桿支護(hù)巷道變形破壞研究[J];煤炭學(xué)報(bào);2011年01期
3 張國(guó)華;梁冰;張宏偉;張雪峰;;回采巷道頂板離層分析與錨桿組合支護(hù)技術(shù)參數(shù)確定[J];重慶大學(xué)學(xué)報(bào);2010年07期
4 王襄禹;柏建彪;陳勇;胡忠超;;深井巷道圍巖應(yīng)力松弛效應(yīng)與控制技術(shù)[J];煤炭學(xué)報(bào);2010年07期
5 孟慶彬;門燕青;楊以明;申海龍;;巷道圍巖松動(dòng)圈支護(hù)理論及測(cè)試技術(shù)[J];中國(guó)礦山工程;2010年03期
6 勾攀峰;韋四江;張盛;;不同水平應(yīng)力對(duì)巷道穩(wěn)定性的模擬研究[J];采礦與安全工程學(xué)報(bào);2010年02期
7 孫永康;李振雷;徐建文;田素川;郭樹棟;;深井軟巖巷道錨桿支護(hù)原理的研究[J];礦業(yè)工程;2010年02期
8 戴俊;郭相參;;煤礦巷道錨桿支護(hù)的參數(shù)優(yōu)化[J];巖土力學(xué);2009年S1期
9 何滿潮;張國(guó)鋒;王桂蓮;許運(yùn)良;吳創(chuàng)周;唐強(qiáng)達(dá);;深部煤巷底臌控制機(jī)制及應(yīng)用研究[J];巖石力學(xué)與工程學(xué)報(bào);2009年S1期
10 ;Deformation characteristics of surrounding rock of broken and soft rock roadway[J];Mining Science and Technology;2009年02期
,本文編號(hào):1594123
本文鏈接:http://www.sikaile.net/kejilunwen/kuangye/1594123.html