凡納濱對蝦不同家系氨氮代謝相關(guān)酶及相應(yīng)基因應(yīng)答氨氮脅迫的比較研究
[Abstract]:Litopenaeus vannamei, also known as Penaeus vannamei, has a strong adaptability to adversity, a faster growth rate and higher nutritional value. Since its introduction to China in 1988, after nearly 30 years of cultivation and development, Penaeus vannamei has become one of the three major shrimp breeds in China. As the most important environmental factor, ammonia nitrogen, which is harmful to shrimp healthy culture, can enter the tissue fluid of Penaeus vannamei through physiological metabolic pathway and cause blood ammonia. The sensitivity of Penaeus vannamei to ammonia-nitrogen stress was different at different developmental stages. In addition, the sensitivity of Penaeus vannamei to ammonia-nitrogen stress was also significantly different in different families with the same specifications. Therefore, the sensitivity of Penaeus vannamei to ammonia-nitrogen stress at different developmental stages was studied firstly, and then a comparative study was conducted between a family with poor environmental stress resistance (A3281, A) and a family with strong environmental stress resistance (B3271, B), with emphasis on the enzymes related to ammonia-nitrogen metabolism (glutamate). The activities of dehydrogenase (GDHase), glutamine synthase (GSase) and transglutaminase (TGase) and the temporal and spatial variations of their corresponding genes in response to ammonia-nitrogen stress lay a foundation for revealing the sensitivity of Penaeus vannamei to ammonia-nitrogen stress and its molecular mechanism, and provide scientific basis for breeding new strains resistant to ammonia-nitrogen. The results were as follows: 1. Phase II (Z2) of flea-like larvae was the most sensitive to ammonia-nitrogen stress in the early growth stage of Penaeus vannamei. The LC50 was 17.811 mg/L.2, and three enzymes related to ammonia-nitrogen metabolism responded to ammonia-nitrogen stress. (1) Comparative analysis of GDHase activity in different tissues of two families under different concentrations of ammonia-nitrogen stress (3.4-24.6 mg/L) significantly affected Fan. GDHase activity in shrimp tissues: GDHase activity in muscle of two families was significantly inhibited with the increase of ammonia concentration (p0.05); GDHase activity in liver and pancreas tissues of two families was induced with the increase of ammonia concentration in the first five days of stress, but it was significantly inhibited in the later period (5-10 days) of stress (p0.05). There was no significant difference in the activity of GDHase in tissues (p0.05). (2) The activity of GSase in muscle tissue of Penaeus vannamei from two families was induced with the increase of ammonia concentration, but there was significant difference in the activity of GSase in hepatopancreas between families. With the increase of ammonia nitrogen concentration, TGase activity of muscle and hepatopancreas was inhibited significantly in the early stage of ammonia nitrogen stress (T5 days). TGase activity decreased gradually with the increase of ammonia concentration; TGase activity showed significant family differences at the late stage of stress (T5 days). TGase activity in two tissues of family B was significantly inhibited with the increase of ammonia concentration, while that in family A was significantly induced (p0.05). Ammonia-nitrogen stress, the muscle tissue of two families of Penaeus vannamei can maintain ammonia-nitrogen balance by activating ammonia-nitrogen converting enzyme activity (GSase) and inhibiting the activity of ammonia-nitrogen production enzyme (TGase). 3. The integrated biomarker response (IBR) index of three enzymes related to ammonia-nitrogen metabolism was analyzed at three time points. IBR analysis showed that ammonia-nitrogen stress had the greatest effect on the activities of GSase and TGase in the muscle tissues of Penaeus vannamei, and the influence increased with the increase of ammonia-nitrogen concentration. The response time of family B to ammonia-nitrogen stress (T5 days) was significantly earlier than that of family A (5T10 days). It can be inferred that the B muscle tissue of the resistant family could take the lead in regulating the metabolism of ammonia nitrogen through the catalysis of ammonia-nitrogen metabolizing enzymes, especially accelerating the metabolic pathway of glutamate and NH4+ synthesis of glutamine. The results showed that hepatopancreas played a more important role in ammonia-nitrogen stress with the increase of ammonia-nitrogen concentration in the environment. Hepatopancreas was an important target tissue of ammonia-nitrogen stress. 4. The temporal and spatial variation of three ammonia-nitrogen metabolizing enzymes in response to ammonia-nitrogen stress (1) Muscles of different families Comparison of the expression patterns of ammonia-nitrogen metabolizing enzymes genes in meat tissues The expression of GDH-beta and GS genes in muscle tissues of the two families were significantly affected by ammonia-nitrogen concentrations (p0.05). Overall, the expression levels of the two genes were significantly increased with the prolongation of ammonia-nitrogen stress time and the increase of ammonia-nitrogen concentration. Family A (p0.05) showed that family B had a strong ability to mobilize ammonia-nitrogen transformation, which revealed the reasons for the difference of ammonia-nitrogen tolerance in different families. At the later stage of stress, the expression of TG gene in muscle tissue of the two families was significantly different: with the increase of ammonia-nitrogen concentration, TG gene in muscle of family A was significantly down-regulated, while that in muscle of family B was significantly down-regulated. The expression of GDH-beta, GS and TG genes in the hepatopancreas of the two families showed significant difference (p0.05). With the increase of ammonia concentration, the expression of the three genes in the hepatopancreas of the family A were significantly different. The expression of GDH-beta and GS genes in hepatopancreas of both families increased with the increase of ammonia nitrogen in the late stage of stress (5T10 days). In addition, the expression of TG gene showed the same downward trend. It indicated that hepatopancreas of B families with strong resistance could activate ammonia nitrogen metabolic group by increasing ammonia nitrogen concentration in the environment. This study not only enriched the basic biological knowledge of different families of Penaeus vannamei in response to ammonia nitrogen stress, but also laid a foundation for revealing the molecular mechanism of Penaeus vannamei in response to ammonia nitrogen stress and the cultivation of new strains of Penaeus vannamei resistant to ammonia nitrogen stress.
【學(xué)位授予單位】:海南大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:S917.4
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 葛長字;;體重與氨氮濃度對河蚌氨氮排泄的影響[J];安徽農(nóng)業(yè)科學(xué);2010年04期
2 梁健;伍琴;王紅權(quán);金柏濤;唐德約;趙玉蓉;;氨氮對水產(chǎn)動物的影響[J];飼料廣角;2014年02期
3 臧淑梅;;氨氮在水產(chǎn)養(yǎng)殖中的產(chǎn)生、危害及控制[J];黑龍江水產(chǎn);2012年02期
4 孫勉英;扁藻降氨氮作用的試驗[J];水產(chǎn)科學(xué);1985年02期
5 吳秋仙;;蜂窩煤渣對氨氮吸附特性探討[J];水產(chǎn)養(yǎng)殖;2014年01期
6 胡曰利,吳曉芙,聶發(fā)輝;天然蛭石對污水中氨氮吸附去除率的影響[J];中南林學(xué)院學(xué)報;2004年01期
7 符瞰;鐘同暢;夏啟斌;;吸附去除水產(chǎn)養(yǎng)殖中氨氮研究進(jìn)展[J];安徽農(nóng)業(yè)科學(xué);2011年10期
8 趙丹;婁永江;;降低活魚水體氨氮的技術(shù)[J];漁業(yè)科學(xué)進(jìn)展;2012年04期
9 許典球;朱珍珍;;氨氮對魚卵、魚苗、夏花毒性的初步試驗[J];湖南水產(chǎn)科技;1978年04期
10 張建柱;商平;劉濤利;;改性稻殼去除低濃度氨氮的研究[J];安徽農(nóng)業(yè)科學(xué);2011年01期
相關(guān)會議論文 前10條
1 施漢昌;;污水氨氮處理技術(shù)的現(xiàn)狀與發(fā)展[A];中國水污染治理技術(shù)裝備論文集(第十七期)[C];2011年
2 于秀娟;寧立紅;肖予晨;;電化學(xué)陰陽極同時作用去除氨氮的研究[A];2013中國環(huán)境科學(xué)學(xué)會學(xué)術(shù)年會論文集(第八卷)[C];2013年
3 許春華;周琪;張建;;高效藻類塘去除氨氮機理的研究[A];中國化學(xué)會第七屆水處理化學(xué)大會暨學(xué)術(shù)研討會會議論文集[C];2004年
4 孫禮明;王浩明;童慶;;垃圾填埋場滲濾液氨氮去除試驗研究[A];2007中國環(huán)境科學(xué)學(xué)會學(xué)術(shù)年會優(yōu)秀論文集(上卷)[C];2007年
5 楊曉明;耿長君;苗磊;;高氨氮及高濃度難降解化工廢水處理技術(shù)進(jìn)展[A];中國化工學(xué)會2011年年會暨第四屆全國石油和化工行業(yè)節(jié)能節(jié)水減排技術(shù)論壇論文集[C];2011年
6 宋超鵬;梁玉婷;易良銀;;絮凝-包埋組合固定化去除低濃度氨氮的研究[A];2013中國環(huán)境科學(xué)學(xué)會學(xué)術(shù)年會論文集(第五卷)[C];2013年
7 陳欣然;牛翠娟;蒲麗君;井潤貞;;慢性氨氮脅迫對中華鱉稚鱉生長及血液學(xué)指標(biāo)的影響[A];中國動物學(xué)會兩棲爬行動物學(xué)分會2005年學(xué)術(shù)研討會暨會員代表大會論文集[C];2005年
8 孟偉;閆振廣;劉征濤;王宏;余若禎;;基于風(fēng)險的典型流域氨氮水質(zhì)基準(zhǔn)及標(biāo)準(zhǔn)探討[A];中國毒理學(xué)會環(huán)境與生態(tài)毒理學(xué)專業(yè)委員會第二屆學(xué)術(shù)研討會暨中國環(huán)境科學(xué)學(xué)會環(huán)境標(biāo)準(zhǔn)與基準(zhǔn)專業(yè)委員會2011年學(xué)術(shù)研討會會議論文集[C];2011年
9 何立光;;合成氨廠氨氮排放水處理技術(shù)探討[A];2002熱烈慶祝全國化工給排水設(shè)計技術(shù)中心站成立四十周年技術(shù)交流會論文集[C];2002年
10 董姍燕;汪喜生;王文佳;許洲;姚重華;;UNITANK工藝氨氮濃度的動態(tài)特征[A];中國化學(xué)會第八屆水處理化學(xué)大會暨學(xué)術(shù)研討會論文集[C];2006年
相關(guān)重要報紙文章 前10條
1 本報記者 陳宏偉;難以忽視的氨氮[N];中國經(jīng)濟時報;2009年
2 本報記者 李東周;釩鉻氨氮處理:治標(biāo)又治本[N];中國化工報;2014年
3 環(huán)境保護(hù)部華東環(huán)境保護(hù)督查中心 朱風(fēng)松;如何有效減排氨氮?[N];中國環(huán)境報;2011年
4 本報記者 徐琦;氨氮減排從哪里著手?[N];中國環(huán)境報;2011年
5 姜虹;氧化鐵行業(yè)氨氮難題破解[N];中國化工報;2007年
6 本報記者 陳湘靜;氨氮標(biāo)準(zhǔn)控制將重在執(zhí)行[N];中國環(huán)境報;2009年
7 鄭偉;生物法脫除廢水氨氮技術(shù)可望應(yīng)用[N];中國化工報;2008年
8 石磊;生物法脫除廢水氨氮技術(shù)通過評議[N];醫(yī)藥經(jīng)濟報;2008年
9 本報記者 文晶;淮河,,又一聲嘆息[N];經(jīng)濟日報;2005年
10 ;淮河水質(zhì)繼續(xù)惡化 氨氮成為主要污染物[N];安徽經(jīng)濟報;2005年
相關(guān)博士學(xué)位論文 前8條
1 曹昕;鐵錳復(fù)合氧化物催化氧化去除地下水中氨氮研究[D];西安建筑科技大學(xué);2015年
2 康愛彬;三級串聯(lián)人工快滲系統(tǒng)處理高氨氮生活污水[D];中國地質(zhì)大學(xué)(北京);2010年
3 洪美玲;水中亞硝酸鹽和氨氮對中華絨螯蟹幼體的毒性效應(yīng)及維生素E的營養(yǎng)調(diào)節(jié)[D];華東師范大學(xué);2007年
4 張肖靜;基于MBR的全程自養(yǎng)脫氮工藝(CANON)性能及微生物特性研究[D];哈爾濱工業(yè)大學(xué);2014年
5 高樹梅;餐廚垃圾厭氧消化過程中氨氮耐受響應(yīng)機制研究[D];江南大學(xué);2015年
6 程慶鋒;高鐵錳氨氮地下水凈化工藝優(yōu)化及菌群結(jié)構(gòu)研究[D];哈爾濱工業(yè)大學(xué);2014年
7 郭英明;鐵錳氧化膜催化氧化同步去除地下水中氨氮和錳的研究[D];西安建筑科技大學(xué);2017年
8 左椒蘭;真空/生物脫氮及對廢水C/N值影響的研究[D];華中科技大學(xué);2012年
相關(guān)碩士學(xué)位論文 前10條
1 馬金玲;高氨氮、高鹽制藥廢水生物脫氮高效菌株的篩選[D];河北大學(xué);2015年
2 劉志云;氨氮降解菌的分離鑒定及其抑制雞糞氨氣揮發(fā)效果的研究[D];中國農(nóng)業(yè)科學(xué)院;2015年
3 楊帥;離子型稀土礦開采過程中氨氮吸附解吸行為研究[D];中國地質(zhì)大學(xué)(北京);2015年
4 曾鑫;MAP沉淀聯(lián)合臭氧處理養(yǎng)豬場高濃度沼液的研究[D];西北農(nóng)林科技大學(xué);2015年
5 楊歡;基于平衡和非平衡模型的包氣帶土壤中氨氮運移過程研究[D];中國地質(zhì)大學(xué)(北京);2015年
6 王園園;火電廠反滲透濃水電解除氨氮及制氯性能研究[D];長安大學(xué);2015年
7 梁蓓;煤制氮肥廠廢水氨氮預(yù)處理及回收研究[D];西安建筑科技大學(xué);2015年
8 韓新盛;銀川市賀蘭山水廠氨氮處理工藝的研究[D];長安大學(xué);2015年
9 劉廣陽;粉末活性炭—膜生物反應(yīng)器處理含鐵、含錳、含氨氮地下水研究[D];哈爾濱工業(yè)大學(xué);2015年
10 韓新明;基于氨氮強化去除的凈水關(guān)鍵工藝單元運行優(yōu)化[D];哈爾濱工業(yè)大學(xué);2015年
本文編號:2229196
本文鏈接:http://www.sikaile.net/kejilunwen/jiyingongcheng/2229196.html