擬南芥CDE家族基因表達模式的研究
本文選題:DUF1336 + CDE ; 參考:《山東農業(yè)大學》2016年碩士論文
【摘要】:擬南芥CDE基因家族包含5個基因(CDE1,At1g10410;CE2,At1g13970;CDE3,At1g59650;CDE4,At3g29180;CDE5,At5g39430),都包含 DUF1336 結構域,屬于DUF1336基因家族。DUF1336基因家族共包含15個基因。目前對擬南芥DUF1336家族基因的研究較少,僅有關于EDR2的報導,該基因與擬南芥對白粉病的抗性有關。課題對擬南芥CDE家族基因進行了相關研究,主要結果如下:課題對DUF1336基因家族的生物信息學信息進行了分析。對DUF1336基因家族所表達蛋白質的序列進行比對分析,發(fā)現(xiàn)該家族基因產生的蛋白質依據(jù)其結構可以分為三類,一類包含PH結構域、START結構域和DUF1336結構域,一類基本只包含DUF1336結構域,最后一類包含DUF1336結構域和N端的一段肽鏈,CDE基因家族屬于最后一類。通過基因序列的比對分析發(fā)現(xiàn)DUF1336家族基因為植物特異。多物種DNA序列比對分析發(fā)現(xiàn)進化中較早產生的植物中不含DUF1336家族基因,而在被子植物中,許多物種也沒有DUF1336家族基因。除此之外,還對CDE基因家族的蛋白質結構使用相關軟件進行了預測。蛋白質跨膜性預測分析顯示CDE基因家族表達的蛋白質為非跨膜蛋白。對CDE家族基因的相關突變體進行研究,轉錄組學數(shù)據(jù)(AtGenExpress Visualization Tool,http://www.arabidopsis.org/)顯示脅迫處理會使CDE家族基因的表達水平發(fā)生明顯變化,但對CDE1、CDE4的缺失突變體和野生型對照進行氯化鈉處理和甘露醇處理,結果沒有發(fā)現(xiàn)突變體有明顯的表型。在擬南芥生長的幼苗時期(7d),有蓮座葉但抽薹前和植株成熟時(產生成熟果莢)這三個時期對擬南芥各個部位進行半定量RT-PCR和GUS染色,用來分析擬南芥CDE家族基因的表達模式。半定量RT-PCR的結果顯示:CDE1,CDE2,CDE3,CDE4在擬南芥幼苗時期根中的表達量高于地上部,在成熟植株中根、莖、花器官中表達量較高,CDE2,CDE4在花粉中的表達明顯高于其它部位;CDE5全程未檢測到基因表達。GUS染色分析顯示:CDE基因家族5個基因的表達有差異,但很多地方相似,CDE1,CDE2,CDE3,CDE4在擬南芥營養(yǎng)生長時期集中在根尖,地上部氣孔、葉脈中表達,生殖生長時期地上部集中在花器官中表達;CDE5表達量較少,且該基因與氣孔關系密切;同時實驗中發(fā)現(xiàn)CDE4的GUS材料在受到機械損傷時會在附近產生較多的GUS信號,表明CDE家族基因可能與機械損傷和脅迫相關。課題通過對DUF1336基因家族生物信息學信息的分析,CDE家族基因相關突變體的研究,半定量RT-PCR及GUS染色分析CDE基因家族表達模式這些實驗,獲得了CDE基因家族的一些基礎性信息,為以后對CDE基因家族功能的研究提供了基礎。
[Abstract]:The CDE gene family of Arabidopsis thaliana contains five genes, CDE1, At1g1041010, CE2U, At1g13970, CDE3, At1g59650, CDE5, AT3G29180CDE5, At5g39430, all of which contain DUF1336 domain, and belong to the DUF1336 gene family. The DUF1336 gene family contains 15 genes. There are few studies on Arabidopsis DUF1336 family genes, only about EDR2, which is related to resistance to powdery mildew in Arabidopsis thaliana. The main results are as follows: the bioinformatics information of DUF1336 gene family was analyzed. By comparing the sequences of proteins expressed in DUF1336 gene family, it was found that the proteins produced by DUF1336 gene family could be divided into three groups according to their structures, one containing PH domain, the other containing DUF1336 domain, and the other containing only DUF1336 domain. The final family of peptide chain CDE genes containing DUF1336 domain and N terminal belongs to the last class. By the alignment analysis of gene sequences, the DUF1336 family was found to be specific to plants. Multiple species DNA sequence alignment analysis showed that there were no DUF1336 family genes in plants born earlier in evolution, while in angiosperms, many species did not have DUF1336 family genes. In addition, the protein structure of CDE gene family was predicted by software. Protein transmembrane prediction analysis showed that the proteins expressed by CDE gene family were non-transmembrane proteins. In this study of CDE family genes, transcriptome data show that stress treatment can significantly change the expression level of CDE family genes, as shown by AtGenExpress Visualization tool http: / www.arabidopsis.orgr. However, sodium chloride and mannitol treatments were used to treat the deletion mutant and wild type control of CDE1 / CDE4, and no obvious phenotype was found in the mutant. At the seedling stage of Arabidopsis thaliana, there were rosette leaves before bolting and mature fruit pods. Semi-quantitative RT-PCR and GUS staining were used to analyze the expression pattern of CDE family genes in Arabidopsis thaliana. The results of semi-quantitative RT-PCR showed that the expression of CDE2 + CDE3 CDE4 in roots of Arabidopsis thaliana seedlings was higher than that in shoots, and the expression of CDE4 in roots and stems of mature plants was higher than that in roots of Arabidopsis thaliana seedlings. The expression of CDE2CDE4 in flower organs was significantly higher than that in other parts of pollen. The results of Gus staining showed that there were differences in the expression of 5 genes in the gene family of 20% CDE gene family. But in many places, CDE1, CDE2, CDE3, CDE4 were expressed in root tip, shoot stomata and leaf vein during vegetative growth of Arabidopsis thaliana, and the expression of CDE5 in floral organs was less in shoot during reproductive growth, and the gene was closely related to stomata. At the same time, it was found that the GUS material of CDE4 produced more GUS signals in the vicinity when it was subjected to mechanical damage, indicating that the CDE family genes might be related to mechanical damage and stress. Through the analysis of bioinformatics information of DUF1336 gene family, the study of gene related mutants of DUF1336 family, semi-quantitative RT-PCR and GUS staining to analyze the expression pattern of CDE gene family, some basic information of CDE gene family were obtained. It provides a basis for the study of the function of CDE gene family in the future.
【學位授予單位】:山東農業(yè)大學
【學位級別】:碩士
【學位授予年份】:2016
【分類號】:Q943.2
【相似文獻】
相關期刊論文 前4條
1 王瑛;蔣曉東;張璐;劉飛;;基于CDE的城市土壤重金屬污染源分析[J];科技管理研究;2014年12期
2 趙蘭杰;朱守鴻;張新宇;李艷軍;孫杰;劉永昌;;擬南芥AtPUB18的亞細胞定位和酶活性及AtPUB18的表達[J];西北植物學報;2014年05期
3 李桂花;李保國;;大腸桿菌在飽和砂質壤土中非平衡運移的CDE數(shù)學模型模擬[J];土壤學報;2006年02期
4 劉浩;王棚濤;于雅薇;;擬南芥ABA敏感突變體asm1的分離與鑒定[J];西北植物學報;2014年05期
相關會議論文 前4條
1 李志艷;李德樹;徐龍江;;利用CDE觀察彩色多普勒快閃偽像的應用價值[A];全國醫(yī)學影像技術學術會議(CMIT-2004)論文匯編[C];2004年
2 劉艷君;田煥;王學梅;;腎癌的3D-CDE超聲表現(xiàn)與臨床病理分析[A];第九屆全國超聲醫(yī)學學術會議論文匯編[C];2006年
3 舒正國;羅運強;;電容器的品質與美國CDE電容[A];中國電工技術學會電力電子學會第八屆學術年會論文集[C];2002年
4 舒正國;羅運強;;高效、高容、低阻抗、長壽命的美國CDE表面安裝(SMT)電容及其應用選型[A];中國電工技術學會電力電子學會第八屆學術年會論文集[C];2002年
相關博士學位論文 前10條
1 歐洋;兩組類受體激酶調控擬南芥根生長發(fā)育的分子機理[D];蘭州大學;2017年
2 MADIHA HAMYAT;擬南芥和煙草LRR受體激酶家族及其在調控葉片衰老中作用研究[D];中國農業(yè)科學院;2016年
3 薛濤;擬南芥miR159及其靶基因調控離體苗再生的作用研究[D];山東大學;2017年
4 鄭凱杰;調控擬南芥表皮毛發(fā)生的核心轉錄因子的水稻同源蛋白的功能研究[D];東北師范大學;2017年
5 李澤惠;擬南芥CPSF30基因克隆及其在NO_3~-信號調控中的功能鑒定研究[D];山東農業(yè)大學;2016年
6 李娟;擬南芥鉀通道AKT1參與低鉀脅迫感受、調控根生長的機制研究[D];中國農業(yè)大學;2017年
7 王瑋;擬南芥TOPP4去磷酸化DELLA及六個保守絲/蘇氨酸位點對RGA蛋白功能和穩(wěn)定性影響[D];蘭州大學;2014年
8 章薇;擬南芥葉綠素代謝與維生素E合成代謝的關系研究[D];華中農業(yè)大學;2017年
9 李秋蘋;OsHAP家族基因的功能研究和粒形基因GL3.2的圖位克隆[D];華中農業(yè)大學;2016年
10 張銳;棉花COL家族基因的鑒定、表達與進化分析[D];南京農業(yè)大學;2014年
相關碩士學位論文 前10條
1 張春青;擬南芥CDE家族基因表達模式的研究[D];山東農業(yè)大學;2016年
2 張清鳳;果膠甲基酯酶在油菜素內酯調節(jié)擬南芥生長發(fā)育中的作用[D];蘭州大學;2017年
3 任云;過表達CFLAP1基因擬南芥耐鹽性分析[D];鄭州大學;2017年
4 呂旭才;Why在擬南芥和甘藍型油菜中的過表達及抗鹽性和抗旱性的研究[D];西南科技大學;2017年
5 楊永峰;萘乙酸對擬南芥根生長發(fā)育的影響[D];鄭州大學;2017年
6 程征;轉OXO擬南芥抗黃萎病機理的初步研究[D];鄭州大學;2017年
7 劉向峰;抗凍基因轉擬南芥抗凍機理及在玉米自交系中表達初步研究[D];東北農業(yè)大學;2017年
8 劉曄彤;乙烯信號調控擬南芥發(fā)育時相轉換的分子機制[D];上海師范大學;2017年
9 王志鑫;擬南芥中GSK3參與滲透脅迫響應的研究[D];華中農業(yè)大學;2017年
10 岳斌;氣體信號分子H_2S對擬南芥生長的影響[D];山西大學;2017年
,本文編號:1870211
本文鏈接:http://www.sikaile.net/kejilunwen/jiyingongcheng/1870211.html