天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 機(jī)械論文 >

基于EEMD與SVD相結(jié)合的弱信號(hào)提取方法

發(fā)布時(shí)間:2019-08-26 10:36
【摘要】:提出了基于集合經(jīng)驗(yàn)?zāi)B(tài)分解(EEMD)和奇異值(SVD)相結(jié)合的微弱信號(hào)提取方法和高低頻部分的判別準(zhǔn)則:采用EEMD把信號(hào)分解成幾部分,將IMF分為高頻段與低頻段2部分,對(duì)2部分分別進(jìn)行奇異值處理,疊加得到降噪信號(hào),做出其頻譜圖,得到所需要的有用信號(hào)。此方法可以在未知原信號(hào)的情況下提取,并且可以提取信噪比為-15 dB的信號(hào)。仿真結(jié)果和對(duì)比分析表明,此方法能更好地提取微弱特征信號(hào)。
[Abstract]:A weak signal extraction method based on ensemble empirical mode decomposition (EEMD) and singular value (SVD) and a criterion for distinguishing high and low frequency components are presented. The signal is decomposed into several parts by using EEMD, and the IMF is divided into high frequency band and low frequency section 2, and the two parts are respectively subjected to singular value processing. The noise reduction signal is superposed to obtain the noise reduction signal, and the spectrum diagram thereof is made to obtain the required useful signal. The method can be extracted in the case of an unknown original signal, and a signal with a signal-to-noise ratio of -15dB can be extracted. The simulation results and the comparative analysis show that the method can better extract the weak characteristic signal.
【作者單位】: 西安建筑科技大學(xué)機(jī)電工程學(xué)院;
【基金】:國(guó)家自然科學(xué)基金青年科學(xué)基金項(xiàng)目(51105292) 教育部博士點(diǎn)基金項(xiàng)目(20126120110009) 陜西省科技攻關(guān)項(xiàng)目(2013K07-09) 陜西省教育廳專項(xiàng)基金項(xiàng)目(2013JK1032)
【分類號(hào)】:TH17

【相似文獻(xiàn)】

相關(guān)期刊論文 前2條

1 蘇永生;王永生;應(yīng)冬;段向陽(yáng);;離心泵空化特征信號(hào)提取中的干擾及其對(duì)策[J];煤礦機(jī)械;2008年11期

2 ;[J];;年期



本文編號(hào):2529222

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/jixiegongcheng/2529222.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶30db7***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com