天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 機(jī)械論文 >

單根多楔帶傳動系統(tǒng)的旋轉(zhuǎn)振動及帶橫向振動計(jì)算方法的研究

發(fā)布時(shí)間:2019-06-21 04:08
【摘要】:自1970年以來,單根多楔帶傳動系統(tǒng)在汽車發(fā)動機(jī)前端附件驅(qū)動(Front End Accessory Drive,FEAD)系統(tǒng)中得到廣泛的應(yīng)用。多楔帶傳動系統(tǒng)是由離散系統(tǒng)(各帶輪和張緊臂)以及連續(xù)系統(tǒng)(柔性多楔帶)組成的混合動力學(xué)機(jī)械系統(tǒng),其振動型式非常復(fù)雜。其包括各帶輪的旋轉(zhuǎn)振動、張緊器的擺動、帶的空間三向振動(縱向、橫向和側(cè)向振動)及其與接觸帶輪之間的耦合振動,以及帶還可能發(fā)生彎曲振動及彎扭復(fù)合振動等等。除此之外,為了避免系統(tǒng)的共振,系統(tǒng)的固有頻率也是非常受關(guān)注的內(nèi)容。我國對多楔帶傳動系統(tǒng)的研究起步較晚,現(xiàn)在還處于初期階段,特別是對其動態(tài)特性的研究。于是,針對多楔帶傳動系統(tǒng),作者開展了如下研究工作: 其一,以單根多楔帶傳動系統(tǒng)為研究對象,建立了適用于任意布置型式系統(tǒng)的旋轉(zhuǎn)振動模型,并給出了其穩(wěn)態(tài)及動態(tài)響應(yīng)的求解方法。綜合考慮帶的縱向運(yùn)動和各輪的旋轉(zhuǎn)運(yùn)動,推導(dǎo)了其運(yùn)動方程并且給出了系統(tǒng)穩(wěn)態(tài)分析的方法。對運(yùn)動方程關(guān)于系統(tǒng)穩(wěn)態(tài)做線性化處理,得到系統(tǒng)動態(tài)方程并給出了系統(tǒng)微幅振動響應(yīng)的求解方法。就某發(fā)動機(jī)FEAD系統(tǒng),計(jì)算了其振動響應(yīng)。并且,對任意布置型式的輪系,給出了其統(tǒng)一的帶段長、包角等參數(shù)的公式。 其二,以三輪-帶多楔帶傳動系統(tǒng)為研究對象,建立了梁耦合振動模型;诖四P,計(jì)算了帶的橫向振動。由于旋轉(zhuǎn)模型主要是分析系統(tǒng)中的旋轉(zhuǎn)振動,對于多楔帶這一關(guān)鍵部件,只能間接地分析其縱向伸縮運(yùn)動。實(shí)際系統(tǒng)中,多楔帶橫向振動對系統(tǒng)振動及帶壽命影響較大。為了預(yù)測帶的橫向振動,作者又開展了較為復(fù)雜的梁耦合振動模型的研究。模型中,帶簡化為縱向運(yùn)動伯努利-歐拉梁,各輪和張緊器簡化為剛性旋轉(zhuǎn)元件。應(yīng)用邊界值問題(BVP)求解技術(shù)計(jì)算了帶橫向位移的穩(wěn)態(tài)解;帶的橫向振動位移為時(shí)間與空間的函數(shù),應(yīng)用迦遼金法將其離散為時(shí)間函數(shù)和空間函數(shù)之積,計(jì)算了各帶的橫向振動。實(shí)驗(yàn)測試了一三輪-帶傳動系統(tǒng)中帶的橫向振動和輪的旋轉(zhuǎn)振動。并且通過對比計(jì)算結(jié)果與實(shí)測結(jié)果,驗(yàn)證了文中計(jì)算帶橫向振動方法的可行性。
[Abstract]:Since 1970, single multi-wedged belt drive system has been widely used in automobile engine front-end attachment drive (Front End Accessory Drive,FEAD) system. Multi-wedged belt transmission system is a hybrid dynamic mechanical system composed of discrete system (pulley and tension arm) and continuous system (flexible multi-wedged belt). The vibration type of multi-wedged belt transmission system is very complex. It includes the rotating vibration of each pulley, the swing of tensioner, the spatial three-way vibration of the belt (longitudinal, transverse and lateral vibration) and its coupling vibration with the contact pulley, as well as the possible bending vibration and bending-torsional composite vibration of the belt, and so on. In addition, in order to avoid the resonance of the system, the natural frequency of the system is also very concerned. The research on multi-wedged belt transmission system in China started late, and is still in its early stage, especially the study of its dynamic characteristics. Therefore, for the multi-wedged belt transmission system, the author has carried out the following research work: first, taking the single multi-wedged belt transmission system as the research object, the rotating vibration model suitable for any arrangement type system is established, and the solution method of its steady state and dynamic response is given. Considering the longitudinal motion of the belt and the rotating motion of each wheel, the equation of motion is derived and the method of steady state analysis of the system is given. The equation of motion is linearized about the steady state of the system, and the dynamic equation of the system is obtained, and the solution method of the micro-amplitude vibration response of the system is given. The vibration response of an engine FEAD system is calculated. Moreover, for any type of gear train, the unified formulas of band length, package angle and other parameters are given. Secondly, taking the three-wheel-belt multi-wedged belt transmission system as the research object, the beam coupling vibration model is established. Based on this model, the transverse vibration of the band is calculated. Because the rotation model is mainly to analyze the rotating vibration in the system, the longitudinal telescopic motion of the multi-wedged belt can only be analyzed indirectly. In the actual system, the transverse vibration of multi-wedged belt has great influence on the vibration and belt life of the system. In order to predict the transverse vibration of the band, the author also studies the complex beam coupling vibration model. In the model, the belt is simplified to the longitudinal motion Bernoulli Euler beam, and the wheels and tensioners are simplified to rigid rotating elements. The steady state solution of the transverse displacement with transverse displacement is calculated by using the boundary value problem (BVP) solution technique, and the transverse vibration displacement of the band is a function of time and space, which is discretized into the product of time function and spatial function by Galerkin method, and the transverse vibration of each band is calculated. The transverse vibration of the belt and the rotating vibration of the wheel in a three-wheel-belt transmission system are tested. By comparing the calculated results with the measured results, the feasibility of the method for calculating the transverse vibration of the belt is verified.
【學(xué)位授予單位】:華南理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2011
【分類號】:TH132.32

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 王紅云;上官文斌;;Tensioner Vibration and Belt Slipping Behavior Investigation for Damped Serpentine Belt Drive Systems[J];Journal of Beijing Institute of Technology;2010年01期

2 李承謙;;柴油機(jī)前端附件驅(qū)動系統(tǒng)的設(shè)計(jì)[J];柴油機(jī)設(shè)計(jì)與制造;2008年01期

3 劉偉;張勁夫;;粘彈性傳動帶的分岔特性和混沌振動分析[J];動力學(xué)與控制學(xué)報(bào);2005年03期

4 陳立群,吳哲民;一類平帶驅(qū)動系統(tǒng)非線性振動的幅頻特性[J];工程力學(xué);2003年01期

5 支秀蘭;汽車用多楔帶壽命試驗(yàn)臺計(jì)算機(jī)控制系統(tǒng)設(shè)計(jì)[J];佳木斯大學(xué)學(xué)報(bào)(自然科學(xué)版);1999年02期

6 王紅云;曾祥坤;上官文斌;;單根帶發(fā)動機(jī)附件驅(qū)動系統(tǒng)模型及其求解[J];機(jī)械傳動;2010年05期

7 李占國;楊智光;;多楔帶的結(jié)構(gòu)與特點(diǎn)[J];機(jī)械工程師;1993年05期

8 劉偉;張勁夫;;傳動帶的振動穩(wěn)定性研究[J];機(jī)械科學(xué)與技術(shù);2006年02期

9 張偉;陳立群;;軸向運(yùn)動弦線橫向振動的控制:能量方法[J];機(jī)械強(qiáng)度;2006年02期

10 侯之超;王象武;勞耀新;;多楔帶傳動系統(tǒng)的頻率靈敏度分析[J];機(jī)械工程學(xué)報(bào);2009年11期

,

本文編號:2503775

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/jixiegongcheng/2503775.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶e27a4***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com