基于遺傳算法的橋式起重機結構進化設計
[Abstract]:With the development of biological evolution theory, evolutionary technology has become a general problem solving technology, which is more and more popular. By learning the process of evolution and solving the complex problems in life, the theory of biological evolution is perfectly applied to practice. Among all evolutionary algorithms, genetic algorithm is the fastest developing and the most popular one. The genetic algorithm uses the method of studying target population to extract genes, organize searching for multiple regions of solution space, carry on genetic operation and variation, analyze fitness, produce better offspring, inherit many times, and then produce ideal optimal solution. It has the characteristics of self-organization, self-learning, self-adaptation and so on. It is especially suitable for large-scale parallel computing. Moreover, it has high evolutionary efficiency, simple operation and strong generality. The finite element theory has been widely used in engineering practice, which not only improves the precision of structural analysis, saves the time of structural design, improves the efficiency of design, but also realizes programmed and parameterized design. The combination of evolutionary design theory and structural finite element analysis can be applied to the metal structure design of overhead crane, which has remarkable scientific research and economic value, and can better guide the engineering practice. Firstly, the paper deeply studies the literature about genetic algorithm and structural evolutionary design at home and abroad, summarizes the research history and development status of structural evolutionary design, the important role and engineering application of finite element theory in the design of large-scale metal structures. Then using the finite element analysis software ANSYS APDL language to carry on the parametric modeling to the overhead crane, and according to the crane design criterion to carry on the working condition analysis, on this basis, combined with the genetic algorithm to establish the mathematical model, The genetic evolution operation, fitness analysis and multi-generation evolution of genes with parameterized metal structure were carried out. Finally, the optimal solution was obtained, that is, the optimal structural size, which meets the requirements and uses the optimal material. Finally, the algorithm of the paper is encapsulated by VC 6.0.It forms a simple user interface and is easy to use in engineering. Based on the practical design of metal structure of overhead crane, combining the advantages of genetic algorithm and finite element analysis of structure, this paper not only realizes the fast calculation of metal structure under various working conditions, but also combines the advantages of genetic algorithm and finite element analysis of structure. Finally, the fast parallel optimization of structural design gene in multi-direction is completed, and finally the satisfactory optimal solution is obtained, which can guide the engineering practice better.
【學位授予單位】:武漢理工大學
【學位級別】:碩士
【學位授予年份】:2012
【分類號】:TP18;TH215
【參考文獻】
相關期刊論文 前10條
1 賴忠喜;王偉麟;;VC++與MTALAB的混合編程的研究[J];福建電腦;2010年03期
2 劉志方,邢國雷;工程實用的遺傳算法結構優(yōu)化設計[J];工程建設與設計;2005年01期
3 王周益;劉繼興;柳長安;;VC++與MATLAB混合編程研究及開發(fā)實例[J];計算機應用研究;2006年05期
4 王翔;高亮;邱浩波;;進化設計及其相關技術研究[J];機械設計與制造;2006年04期
5 唐小兵,沈成武,陳定方;神經(jīng)網(wǎng)絡與遺傳算法結合在結構優(yōu)化設計中的應用[J];武漢交通科技大學學報;1999年05期
6 姜濤,朱燈林,王安麟,王石剛;整合規(guī)則下的結構拓撲自組織進化設計[J];機械科學與技術;2005年08期
7 曾志華;虞偉建;;ANSYS結構優(yōu)化技術在機械設計中的應用[J];中國制造業(yè)信息化;2009年13期
8 李淑華,李樹森;橋式起重機橋架結構的ANSYS有限元分析[J];林業(yè)機械與木工設備;2005年06期
9 馬元馳,孫國正;神經(jīng)網(wǎng)絡與進化策略在結構優(yōu)化設計中的結合[J];機械;2004年05期
10 陳仲超,陸金桂,朱伯興;遺傳算法和神經(jīng)網(wǎng)絡的結構優(yōu)化策略[J];南京化工大學學報(自然科學版);1999年01期
相關博士學位論文 前2條
1 李洪杰;面向機構構型設計的進化設計原理和方法的研究[D];華中科技大學;2004年
2 王吉華;基于特征函數(shù)的產(chǎn)品造型進化設計研究[D];山東師范大學;2009年
相關碩士學位論文 前9條
1 陳飛婷;基于遺傳算法的變幅機構的設計[D];武漢理工大學;2004年
2 姜封國;基于遺傳算法的結構可靠性優(yōu)化問題的初步討論[D];哈爾濱工程大學;2005年
3 曾春;基于ANSYS的橋式起重機橋架結構有限元動態(tài)分析研究[D];武漢理工大學;2006年
4 李明星;基于遺傳算法的門座起重機變幅系統(tǒng)優(yōu)化設計[D];武漢理工大學;2006年
5 吳瑞;基于遺傳算法的模糊神經(jīng)網(wǎng)絡控制器的優(yōu)化以及MATLAB與VC數(shù)據(jù)交換的研究[D];西安理工大學;2007年
6 姚鎖寧;基于MATLAB/VC的教學評估系統(tǒng)研究與開發(fā)[D];西安理工大學;2008年
7 王凱;一種汽車造型特征設計的進化方法[D];湖南大學;2009年
8 岳亮亮;基于MATLAB和VC++混合編程的汽車動力與傳動系統(tǒng)匹配研究[D];武漢理工大學;2010年
9 吳虎;基于MATLAB遺傳算法工具箱的組合渦旋型線優(yōu)化[D];蘭州理工大學;2010年
,本文編號:2466235
本文鏈接:http://www.sikaile.net/kejilunwen/jixiegongcheng/2466235.html