微機電慣性測量系統(tǒng)誤差建模與標定方法研究
發(fā)布時間:2019-04-12 07:27
【摘要】:微機電慣性測量系統(tǒng)(Micro-Electric Mechanical Inertial Measurement System)是應用微型慣性器件對運載體進行導航參數(shù)測量的裝置,如何對微機電慣性測量系統(tǒng)進行系統(tǒng)建模和誤差分析,從而研究出更為有效的標定方法,提高導航解算精度,是利用和發(fā)展微機電慣性測量系統(tǒng)的關鍵技術之一。 以基于中、低精度的微機電慣性器件的慣性測量系統(tǒng)為研究對象,以應用微機電慣性測量系統(tǒng)的小型戰(zhàn)術導彈為研究背景。首先對微機電慣性器件進行性能分析,建立微機電慣性器件的靜、動態(tài)數(shù)學模型,然后分析了造成微機電慣性測量系統(tǒng)的誤差原因,確定了微機電慣性測量系統(tǒng)的誤差模型和誤差補償方法,為設計微機電慣性測量系統(tǒng)的標定模型奠定基礎。 設計基于最小二乘估計法的標定模型,針對滾轉方向角速率范圍較大的特點,,開展了標定方法研究,在全量程線性標定方法的基礎上進行優(yōu)化設計,應用分段標定方法,并加入非線性計算標定方法,減小了均方差和標度因數(shù)誤差,然后將標度因數(shù)代入導航解算模型,在各項考核試驗中進行了測試驗證。
[Abstract]:Micro-Electro-Mechanical Inertial Measurement system (Micro-Electric Mechanical Inertial Measurement System) is a device which uses micro-inertial device to measure navigation parameters of carrier. How to build the system model and analyze the error of the micro-electro-mechanical inertial measurement system? Therefore, it is one of the key technologies to use and develop the MEMS inertial measurement system to study more effective calibration methods and improve the precision of navigation calculation. The research object is the inertial measurement system based on the middle and low precision micro-electro-mechanical inertial devices, and the research background is the small tactical missile based on the micro-electro-mechanical inertial measurement system. Firstly, the performance of MEMS inertial device is analyzed, and the static and dynamic mathematical model of MEMS is established. Then the error cause of MEMS inertial measurement system is analyzed. The error model and error compensation method of the micro-electro-mechanical inertial measurement system are determined, which lays a foundation for the design of the calibration model of the micro-electro-mechanical inertial measurement system. The calibration model based on the least squares estimation method is designed. Aiming at the characteristics of the wide range of angular velocity in the rolling direction, the calibration method is studied. Based on the linear calibration method of the full range, the optimal design is carried out and the piecewise calibration method is applied. The non-linear calculation calibration method is added to reduce the mean variance and scale factor error. Then the scale factor is added into the navigation solution model and tested and verified in each check-up test.
【學位授予單位】:國防科學技術大學
【學位級別】:碩士
【學位授予年份】:2012
【分類號】:TP274;TH-39
本文編號:2456829
[Abstract]:Micro-Electro-Mechanical Inertial Measurement system (Micro-Electric Mechanical Inertial Measurement System) is a device which uses micro-inertial device to measure navigation parameters of carrier. How to build the system model and analyze the error of the micro-electro-mechanical inertial measurement system? Therefore, it is one of the key technologies to use and develop the MEMS inertial measurement system to study more effective calibration methods and improve the precision of navigation calculation. The research object is the inertial measurement system based on the middle and low precision micro-electro-mechanical inertial devices, and the research background is the small tactical missile based on the micro-electro-mechanical inertial measurement system. Firstly, the performance of MEMS inertial device is analyzed, and the static and dynamic mathematical model of MEMS is established. Then the error cause of MEMS inertial measurement system is analyzed. The error model and error compensation method of the micro-electro-mechanical inertial measurement system are determined, which lays a foundation for the design of the calibration model of the micro-electro-mechanical inertial measurement system. The calibration model based on the least squares estimation method is designed. Aiming at the characteristics of the wide range of angular velocity in the rolling direction, the calibration method is studied. Based on the linear calibration method of the full range, the optimal design is carried out and the piecewise calibration method is applied. The non-linear calculation calibration method is added to reduce the mean variance and scale factor error. Then the scale factor is added into the navigation solution model and tested and verified in each check-up test.
【學位授予單位】:國防科學技術大學
【學位級別】:碩士
【學位授予年份】:2012
【分類號】:TP274;TH-39
【參考文獻】
相關期刊論文 前10條
1 呂妍紅;環(huán)形激光陀螺隨機誤差分析[J];傳感器技術;2004年02期
2 趙忠,馬戎,栗瑞江,李勇建,侯正君,呂志清;一種超低成本捷聯(lián)慣性制導系統(tǒng)的研制[J];彈箭與制導學報;2000年02期
3 張京妹,高社生,郭富強;飛控/慣導綜合系統(tǒng)M IRA最優(yōu)冗余結構設計[J];彈箭與制導學報;2003年01期
4 林玉榮,鄧正隆;激光陀螺捷聯(lián)慣導系統(tǒng)中慣性器件誤差的系統(tǒng)級標定[J];哈爾濱工業(yè)大學學報;2001年01期
5 顧穎玲,許江寧,卞鴻巍;陀螺隨機漂移誤差模型建模方法研究[J];海軍工程大學學報;2000年01期
6 鄭露滴,湯全安,章燕申;環(huán)形激光陀螺誤差測試及估計[J];航空學報;2001年01期
7 楊功流,楊君,李俊,高鐘毓;陀螺儀安裝誤差的測量方法研究[J];華中科技大學學報(自然科學版);2003年07期
8 胡峰,孫國基;Kalman濾波的抗野值修正[J];自動化學報;1999年05期
9 熊智,劉建業(yè),林雪原,曾慶化;激光陀螺捷聯(lián)慣性導航系統(tǒng)中慣性器件誤差補償技術[J];上海交通大學學報;2003年11期
10 吳文啟,劉恒春,馬永祥,賀建民;捷聯(lián)尋北系統(tǒng)中的矢量分析方法[J];中國慣性技術學報;1999年03期
本文編號:2456829
本文鏈接:http://www.sikaile.net/kejilunwen/jixiegongcheng/2456829.html
教材專著