基于案例推理的往復(fù)壓縮機(jī)故障診斷專家系統(tǒng)研究
[Abstract]:Reciprocating compressor, as a kind of key equipment widely used in process industry, will have a serious impact on production in case of failure, so it is very important to diagnose the fault of reciprocating compressor. Nowadays, the fault diagnosis of equipment is gradually developed into the diagnosis stage of expert system based on artificial intelligence, which makes the research on fault diagnosis expert system of reciprocating compressor also have in-depth development. Case-based reasoning (CBR) is a new and efficient problem solving method in the field of artificial intelligence. In the field of fault diagnosis, a fault diagnosis expert system is established by adopting a thinking model similar to that of expert diagnosis. The application of this method to the fault diagnosis expert system of reciprocating compressors is of great significance for increasing the utilization rate of reciprocating compressors, reducing the occurrence of accidents and reducing the maintenance costs. In this paper, combined with the structure characteristics, working principle and various fault mechanism of reciprocating compressor, Several key technical problems of case-based reasoning (CBR) applied to fault diagnosis expert system of reciprocating compressor are studied in this paper: applying object-oriented knowledge to represent case knowledge and establishing case base with hierarchical structure; For the hierarchical organization and index of the case, the improved analytic hierarchy process-three-scale analytic hierarchy process is used to calculate the weight. In order to integrate the rule-based reasoning and the case-based reasoning expert system, the fusion mechanism and the method of case-based transformation into rules are studied in order to integrate the rule-based reasoning and case-based expert system by using the optimized K-nearest neighbor weighted similarity calculation method. Finally, based on the research results of knowledge representation and reasoning technology, the functional structure and diagnosis flow of the fault diagnosis expert system for reciprocating compressor based on case-based reasoning are designed, and the expert system is developed and implemented.
【學(xué)位授予單位】:北京化工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2012
【分類號(hào)】:TH452;TH165.3
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李文鴻;孫會(huì)霞;;CBR在分析機(jī)械故障診斷方面的應(yīng)用[J];重慶工學(xué)院學(xué)報(bào)(自然科學(xué)版);2009年06期
2 杜元虎,黃文虎;基于案例推理的故障診斷專家系統(tǒng)中案例檢索策略的研究[J];東北林業(yè)大學(xué)學(xué)報(bào);1999年01期
3 孫家樂;蔣德鵬;;層次分析法中一致判斷矩陣的構(gòu)造方法[J];東南大學(xué)學(xué)報(bào);1991年03期
4 劉君;游家訓(xùn);梁薇;徐楠;趙慧明;郭創(chuàng)新;;基于加權(quán)K近鄰算法的變壓器故障診斷[J];電氣自動(dòng)化;2010年05期
5 駱敏舟,周美立;實(shí)例推理檢索中相似度量方法的研究[J];合肥工業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版);2001年06期
6 張琦,孫劭文,李文鴻,鄭慧娟;基于案例推理的機(jī)械故障診斷方法探討[J];解放軍理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2004年05期
7 凌海風(fēng);郭堅(jiān)毅;嚴(yán)駿;陳海松;;案例推理技術(shù)用于故障診斷時(shí)的相似算法[J];解放軍理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2006年05期
8 徐守坤;韓波;朱全豐;王洪元;;基于粗糙集的故障案例特征提取方法[J];江南大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年05期
9 羅忠良,王克運(yùn),康仁科,郭東明;基于案例推理系統(tǒng)中案例檢索算法的探索[J];計(jì)算機(jī)工程與應(yīng)用;2005年25期
10 楊健;楊曉光;劉曉彬;秦凡;;一種基于k-NN的案例相似度權(quán)重調(diào)整算法[J];計(jì)算機(jī)工程與應(yīng)用;2007年23期
相關(guān)博士學(xué)位論文 前1條
1 苗剛;往復(fù)活塞式壓縮機(jī)關(guān)鍵部件的故障診斷方法研究及應(yīng)用[D];大連理工大學(xué);2006年
相關(guān)碩士學(xué)位論文 前8條
1 劉勇;關(guān)鍵動(dòng)設(shè)備遠(yuǎn)程監(jiān)測(cè)診斷集群化、智能化系統(tǒng)的研究與應(yīng)用[D];北京化工大學(xué);2011年
2 姚華堂;往復(fù)式壓縮機(jī)故障診斷專家系統(tǒng)知識(shí)庫(kù)構(gòu)建與系統(tǒng)實(shí)現(xiàn)[D];浙江工業(yè)大學(xué);2004年
3 趙明;基于案例推理的機(jī)車故障診斷專家系統(tǒng)研究[D];中南大學(xué);2004年
4 賀曉;基于灰色關(guān)聯(lián)的案例推理在智能診斷系統(tǒng)中的應(yīng)用研究[D];華中科技大學(xué);2005年
5 季賽;粗糙集及范例推理技術(shù)在氣象預(yù)測(cè)中的研究[D];南京航空航天大學(xué);2006年
6 劉學(xué)明;飛機(jī)機(jī)械設(shè)備智能故障診斷專家系統(tǒng)研究[D];西安電子科技大學(xué);2008年
7 李宏娟;基于規(guī)則和案例的壓縮機(jī)集成故障診斷專家系統(tǒng)研究[D];湖南大學(xué);2008年
8 鄭佩;基于案例推理的故障診斷技術(shù)研究[D];華中科技大學(xué);2008年
本文編號(hào):2447881
本文鏈接:http://www.sikaile.net/kejilunwen/jixiegongcheng/2447881.html