基于退火遺傳算法的橋式起重機(jī)主梁優(yōu)化設(shè)計(jì)及軟件實(shí)現(xiàn)
[Abstract]:Bridge crane is an important lifting equipment in national economy construction, which plays an important role in modern production and infrastructure construction of our country. The metal structure of bridge crane accounts for more than 60% of the weight of the whole crane. The design theory of crane metal structure used up to now is conservative, which mainly shows that the safety factor is too high and the weight of the structure is too large. This artificial cause the overall size and weight of the crane is too large. If the weight can be minimized on the premise of strength, stiffness and stability, it is not only advantageous to transport and installation, but also can greatly reduce the manufacturing cost. Therefore, it is necessary to optimize the metal structure of bridge crane by means of reasonable optimization design method. Up to now, many scholars at home and abroad have studied the optimization of crane metal structure, and achieved certain results. The main methods used in this paper are: penalty function method, random direction method, compound shape method, etc. Genetic algorithm, etc. However, these methods have done a great deal of work on the improvement of optimization objectives, without any discussion of their optimization performance (optimization speed and global convergence), and a real practical and effective optimization method should not only have good optimization results. It should also have excellent optimization performance. At present, the genetic algorithm used in the optimization design of crane metal structure basically classifies the problem as the optimization problem of mixed variables, which makes the optimized design variables must be rounded. In addition, the basic genetic algorithm has the defects of premature convergence, slow convergence rate and low global convergence rate. In view of this, the accuracy of human eye recognition and the nominal thickness of single rolled steel plate are considered in production practice "1." For the thickness dimensions of steel plate, the optimization design of the metal structure of the repositioning crane belongs to the optimization design problem of constraint, nonlinear and discrete variables, which avoids the phenomenon that the optimized design variables must be rounded. Aiming at the inherent defects of genetic algorithm, the simulated annealing algorithm with strong local search ability is integrated into the improved genetic algorithm to form a hybrid algorithm-adaptive simulated annealing genetic algorithm (Adaptive Simulated Annealing Genetic Algorithm,) for short ASAGA),. Because the new algorithm strengthens their advantages and weakens their shortcomings, the new algorithm achieves complementary behavior, and its better optimization performance is verified by an example. Based on the Visual C 6.0 development platform, taking the cross section area of the main girder of the general bridge crane as the objective function, the mathematical model of the optimization design of the box girder of the general bridge crane is established. The software of "crane box girder optimization" is compiled by using the hybrid algorithm, and the optimization of the section of the main girder of the general bridge crane is carried out. The optimization results are compared with the engineering examples. The optimized cross section area of the main beam can be reduced by 19.9g under various constraint conditions which meet the requirements of the main beam. It is shown that the application of the software can reduce the crane weight and steel consumption, and achieve the purpose of saving cost and improving the design efficiency.
【學(xué)位授予單位】:太原科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2012
【分類(lèi)號(hào)】:TH215
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張昊;陶然;李志勇;杜華;;基于自適應(yīng)模擬退火遺傳算法的特征選擇方法[J];兵工學(xué)報(bào);2009年01期
2 范小寧;林焰;紀(jì)卓尚;;基于自適應(yīng)退火遺傳算法的船舶管路布局優(yōu)化方法[J];大連理工大學(xué)學(xué)報(bào);2007年02期
3 徐格寧;馮曉蕾;陶元芳;楊瑞剛;;基于COM+ VC+ Word技術(shù)的產(chǎn)品設(shè)計(jì)說(shuō)明書(shū)自動(dòng)化研究[J];中國(guó)工程機(jī)械學(xué)報(bào);2009年03期
4 程賢福;橋式起重機(jī)箱形主梁的優(yōu)化設(shè)計(jì)[J];華東交通大學(xué)學(xué)報(bào);2004年04期
5 朱建豐;徐世杰;;基于自適應(yīng)模擬退火遺傳算法的月球軟著陸軌道優(yōu)化[J];航空學(xué)報(bào);2007年04期
6 李宏娟;;面向?qū)ο蟮某绦蛟O(shè)計(jì)方法在橋式起重機(jī)CAD系統(tǒng)開(kāi)發(fā)中的應(yīng)用[J];機(jī)械管理開(kāi)發(fā);2009年01期
7 姜國(guó)勇;原韶坤;臧小惠;;國(guó)內(nèi)外起重機(jī)的特點(diǎn)和發(fā)展趨勢(shì)[J];內(nèi)江科技;2008年12期
8 畢春長(zhǎng),丁予展;遺傳算法在起重機(jī)箱形主梁優(yōu)化設(shè)計(jì)中的應(yīng)用[J];起重運(yùn)輸機(jī)械;1999年09期
9 須雷;起重機(jī)的現(xiàn)代設(shè)計(jì)方法[J];起重運(yùn)輸機(jī)械;1996年08期
10 王金諾,趙永翔,程文明;現(xiàn)代設(shè)計(jì)理論與方法在起重運(yùn)輸機(jī)械中的應(yīng)用和展望[J];起重運(yùn)輸機(jī)械;1997年02期
相關(guān)碩士學(xué)位論文 前7條
1 郝君起;叉車(chē)總體設(shè)計(jì)CAD技術(shù)研究[D];太原科技大學(xué);2011年
2 齊玉紅;基于ANSYS的橋式起重機(jī)主梁結(jié)構(gòu)優(yōu)化設(shè)計(jì)研究[D];鄭州大學(xué);2011年
3 董威;基于Pareto遺傳算法的起重機(jī)主梁優(yōu)化設(shè)計(jì)[D];大連理工大學(xué);2005年
4 李樹(shù)海;基于SolidWorks的橋式起重機(jī)CAD系統(tǒng)研究[D];武漢理工大學(xué);2007年
5 禹海燕;橋式起重機(jī)空腹式箱形主梁的有限元分析[D];太原科技大學(xué);2008年
6 惠忠文;基于組合策略的橋式起重機(jī)結(jié)構(gòu)優(yōu)化方法研究[D];太原科技大學(xué);2008年
7 李波;橋式起重機(jī)金屬結(jié)構(gòu)風(fēng)險(xiǎn)評(píng)估及其可靠性分析[D];上海交通大學(xué);2010年
本文編號(hào):2392058
本文鏈接:http://www.sikaile.net/kejilunwen/jixiegongcheng/2392058.html