曲柄滑塊機(jī)構(gòu)運(yùn)動(dòng)誤差分析及其補(bǔ)償控制研究
[Abstract]:With the rapid development of science and technology, traditional machinery and instruments are developing towards high speed, heavy load, light, miniaturization and precision. High-quality and high-efficiency machines and instruments require higher dynamic accuracy. In the process of design, manufacture, installation, wear and measurement of mechanical equipment, errors will occur, and the existence of clearance in the kinematic pair of the mechanism is an important cause of the errors. The excessive clearance not only reduces the motion accuracy of the mechanism greatly, but also causes the impact of the motion pair, causes the excessive elastic deformation, accelerates the wear of the components, makes the clearance quantity become larger, produces too much noise, and reduces the mechanical efficiency. If the gap is reduced artificially, it will not only lead to the possibility of mechanism jam, affect the service life of the machine, reduce the reliability of the machine, but also increase the difficulty of control. Therefore, it is necessary to study the actual system gap. In order to study the influence of the clearance on the stability of the mechanism, the dynamic analysis and the BP neural network are used in this paper. The mathematical model is established by using the Simulink simulation platform and taking the crank slider mechanism with clearance as an example. The inverse model is established, and the open-loop control with inverse mode feedforward is carried out after analyzing the error of the mechanism. PID with inverse mode feedforward closed-loop control and neural network internal model control and fuzzy control method to control the gap caused by nonlinear error. The experimental results show that the stability of the mechanism with clearance is worse than that of the ideal mechanism because of the existence of clearance. Compared with the model built by BP neural network, the model established by the traditional dynamic analysis method is closer to the actual situation of crank slider mechanism because of the strong nonlinearity of the mechanism with clearance. The simulation speed is faster and the result is more meaningful. Compared with the traditional open-loop control with inverse mode feedforward, the closed loop control with PID plus inverse mode feedforward is more effective in reducing the nonlinear error caused by the gap by using neural network internal model control and fuzzy control. Makes the system more stable.
【學(xué)位授予單位】:南華大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2012
【分類號(hào)】:TH112
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 尉立肖,劉才山;圓柱鉸間隙運(yùn)動(dòng)學(xué)分析及動(dòng)力學(xué)仿真[J];北京大學(xué)學(xué)報(bào)(自然科學(xué)版);2005年05期
2 閻紹澤;航天器中含間隙機(jī)構(gòu)非線性動(dòng)力學(xué)問題及其研究進(jìn)展[J];動(dòng)力學(xué)與控制學(xué)報(bào);2004年02期
3 戴先中,陳珩,何丹,張騰,陸達(dá)君,沈建強(qiáng);神經(jīng)網(wǎng)絡(luò)逆系統(tǒng)及其在電力系統(tǒng)控制中的應(yīng)用[J];電力系統(tǒng)自動(dòng)化;2001年03期
4 俞武勇,季林紅,閻紹澤,金德聞,賈曉紅;含間隙機(jī)構(gòu)運(yùn)動(dòng)副的動(dòng)力學(xué)模型[J];機(jī)械科學(xué)與技術(shù);2001年05期
5 朱巨才,符煒;用無質(zhì)量桿彈簧阻尼組合模型(MLSD模型)對(duì)間隙機(jī)構(gòu)進(jìn)行分析的方法探討[J];機(jī)械科學(xué)與技術(shù);2004年04期
6 常宗瑜,張策,王玉新;含間隙連桿機(jī)構(gòu)的分叉和混沌現(xiàn)象[J];機(jī)械強(qiáng)度;2001年01期
7 靳春梅,邱陽,樊靈,張陵;含間隙彈性機(jī)構(gòu)動(dòng)態(tài)特性分析[J];機(jī)械強(qiáng)度;2001年02期
8 王國(guó)慶,劉宏昭,何長(zhǎng)安;含間隙連桿機(jī)構(gòu)非線性行為研究[J];機(jī)械設(shè)計(jì);2005年03期
9 何丹,戴先中,王勤;神經(jīng)網(wǎng)絡(luò)廣義逆系統(tǒng)控制[J];控制理論與應(yīng)用;2002年01期
10 吳熱冰,李春文;一般非線性系統(tǒng)的構(gòu)造性逆系統(tǒng)方法[J];控制理論與應(yīng)用;2003年03期
相關(guān)碩士學(xué)位論文 前2條
1 劉欽鵬;基于虛擬樣機(jī)技術(shù)的空間精密展開機(jī)構(gòu)動(dòng)力學(xué)分析[D];西安電子科技大學(xué);2006年
2 賈銀軍;鉸鏈間隙對(duì)機(jī)構(gòu)動(dòng)態(tài)性能影響分析與某空間展開機(jī)構(gòu)結(jié)構(gòu)動(dòng)力學(xué)響應(yīng)分析[D];西安電子科技大學(xué);2008年
本文編號(hào):2379026
本文鏈接:http://www.sikaile.net/kejilunwen/jixiegongcheng/2379026.html