幾何約束條件下拓撲與形狀統(tǒng)一優(yōu)化方法研究
[Abstract]:This topic is supported by the project of National Natural Science Foundation of China, "study on the Unified Optimization Design method of Topology and shape of Continuum structures under geometric constraints (50975107)". Aiming at the problem that the current topology optimization method can not be combined with shape optimization and dimension optimization, a parameterized horizontal set topology, shape and dimension optimization method is proposed in this paper, which is extended to the stiffness design of continuum structure. Dynamic optimization design. Firstly, the basic theories of standard level set method and parameterized level set method are introduced, and their advantages and disadvantages are compared. On this basis, aiming at the problem of size or position design of regular holes, a parameterized horizontal set size optimization design method is proposed, which includes the advantages of implicit representation and parametric representation. It provides the precondition for constructing the unified optimization model. Secondly, combining the topological shape optimization model based on the level set method with the dimension optimization model, the unified optimization model is constructed, the sensitivity analysis formula is derived, and the optimization criterion method based on Kuhn-Tucker condition is used to solve the problem. At the same time, aiming at the numerical problems in the unified optimization design, such as the porous interference of regular holes and the hole size thickness, the method of dimension constraint and tolerance band is proposed to solve the problem. Thirdly, an extended finite element method is proposed to solve the unified optimization model. The sawtooth boundary problem of topology optimization has not been solved well, and the extended finite element method is used to solve this problem effectively. The method not only improves the boundary smoothness of the optimization results, but also reduces the calculation time and makes the convergence process more stable. Finally, based on the level set optimization method proposed in this paper, considering the topology optimization and size optimization, a new LED sorting arm is designed, which greatly improves the first order frequency of the sorting arm. The engineering case further verifies the applicability and accuracy of the unified optimization method in dynamic design.
【學位授予單位】:華中科技大學
【學位級別】:碩士
【學位授予年份】:2012
【分類號】:TH122
【參考文獻】
相關期刊論文 前10條
1 程耿東,張東旭;受應力約束的平面彈性體的拓撲優(yōu)化[J];大連理工大學學報;1995年01期
2 左孔天,陳立平,錢勤,羅震,董敏欽,王磊;求解拓撲優(yōu)化問題的一種移動漸進-小波混合算法[J];固體力學學報;2004年04期
3 羅俊召;陳立平;羅震;;基于半隱式格式的水平集法連續(xù)體結構形狀和拓撲優(yōu)化方法[J];固體力學學報;2008年02期
4 孫杰;宋迎東;孫志剛;高希光;;水平集法在多相材料細觀結構優(yōu)化中的應用[J];航空動力學報;2008年08期
5 羅俊召;王書亭;陳立平;;基于水平集方法的均布式柔性機構的拓撲優(yōu)化設計[J];計算力學學報;2009年06期
6 袁振,吳長春;采用非協(xié)調(diào)元的連續(xù)體拓撲優(yōu)化設計 [J];力學學報;2003年02期
7 榮見華,姜節(jié)勝,胡德文,顏東煌,付俊慶;基于應力及其靈敏度的結構拓撲漸進優(yōu)化方法[J];力學學報;2003年05期
8 郭旭,趙康;基于拓撲描述函數(shù)的連續(xù)體結構拓撲優(yōu)化方法[J];力學學報;2004年05期
9 苑鋒;鹿曉陽;陳世英;;水平集拓撲優(yōu)化方法的改進[J];山東建筑大學學報;2007年06期
10 熊振華;莊春剛;丁漢;;基于隱含邊界描述的連續(xù)體拓撲優(yōu)化[J];上海交通大學學報;2007年04期
相關博士學位論文 前1條
1 左孔天;連續(xù)體結構拓撲優(yōu)化理論與應用研究[D];華中科技大學;2004年
相關碩士學位論文 前1條
1 杜金玲;基于水平集進化的全局優(yōu)化進化算法研究[D];西安電子科技大學;2004年
本文編號:2378520
本文鏈接:http://www.sikaile.net/kejilunwen/jixiegongcheng/2378520.html