天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 機(jī)械論文 >

超精密機(jī)床自補(bǔ)償液體靜壓軸承設(shè)計(jì)與特性研究

發(fā)布時(shí)間:2018-08-28 11:38
【摘要】:超精密加工技術(shù)與超精密機(jī)床的發(fā)展對(duì)機(jī)床軸系的靜、動(dòng)態(tài)特性提出了更高的要求,液體靜壓軸承是唯一可以綜合實(shí)現(xiàn)高精度、高剛度和大阻尼的支承方式,因而在高性能精密機(jī)床中具有不可替代的優(yōu)勢(shì)。液態(tài)靜壓轉(zhuǎn)臺(tái)與主軸是超精密機(jī)床的關(guān)鍵功能部件,其研制具有非常重要的意義。本文著眼于液體靜壓轉(zhuǎn)臺(tái)與主軸的應(yīng)用,設(shè)計(jì)了自補(bǔ)償形式的液體靜壓軸承,并采用有限元方法對(duì)其靜、動(dòng)態(tài)特性進(jìn)行了理論研究,最終將其應(yīng)用于靜壓轉(zhuǎn)臺(tái)制造并測(cè)試了其剛度和運(yùn)動(dòng)精度。論文主要目的是系統(tǒng)研究自補(bǔ)償圓錐液體靜壓軸承的設(shè)計(jì)方法、計(jì)算理論和特性參數(shù),對(duì)高精度、高剛度和大阻尼的靜壓轉(zhuǎn)臺(tái)與主軸系統(tǒng)研制提供理論指導(dǎo)。論文的研究工作和主要結(jié)論包括以下幾個(gè)部分:1.從自補(bǔ)償節(jié)流原理出發(fā),設(shè)計(jì)了節(jié)流單元進(jìn)油的角面節(jié)流自補(bǔ)償液體靜壓軸承,將傳統(tǒng)的對(duì)置自補(bǔ)償液體靜壓軸承中常用的節(jié)流單元結(jié)構(gòu)引入角面節(jié)流自補(bǔ)償軸承中,從而避免了節(jié)流表面上潤(rùn)滑劑擴(kuò)散,且未引入對(duì)置油墊自補(bǔ)償結(jié)構(gòu)增加軸向長(zhǎng)度的缺點(diǎn)。該類型軸承結(jié)構(gòu)緊湊,零件簡(jiǎn)單,易于模塊化設(shè)計(jì)與生產(chǎn),而且軸承性能只需靠間隙來(lái)保證,因而有可能實(shí)現(xiàn)很高的剛度和精度,適用于精密機(jī)床軸系應(yīng)用。2.建立了自補(bǔ)償圓錐液體靜壓軸承理論模型,并基于小擾動(dòng)理論研究了軸承靜、動(dòng)態(tài)特性參數(shù)的計(jì)算方法,以此為基礎(chǔ)研究了節(jié)流方式對(duì)液體靜壓軸承承載力、流量、剛度和阻尼系數(shù)的影響。結(jié)果表明:自補(bǔ)償液體靜壓軸承的承載能力高于固定節(jié)流軸承;在小偏心條件下其剛度系數(shù)大于固定節(jié)流軸承,但偏心對(duì)剛度的影響明顯大于固定節(jié)流軸承;徑向自補(bǔ)償靜壓軸承阻尼系數(shù)大于固定節(jié)流軸承,軸向自補(bǔ)償靜壓軸承阻尼系數(shù)介于毛細(xì)管/狹縫節(jié)流和小孔節(jié)流軸承之間。3.采用流量平衡理論研究了自補(bǔ)償液體靜壓軸承剛度最大化的基本條件,即選擇合適的節(jié)流比。對(duì)于本文設(shè)計(jì)的轉(zhuǎn)臺(tái)軸承,軸向最佳節(jié)流比為2,徑向最佳節(jié)流比是內(nèi)流系數(shù)的函數(shù),其數(shù)值略小于2。根據(jù)功率方程討論了盡可能減小軸承功耗的條件,結(jié)果表明軸承間隙和潤(rùn)滑油粘度的選用都不能太小。4.研究了初始節(jié)流系數(shù)、圓錐角度和油腔尺寸對(duì)于自補(bǔ)償液體靜壓轉(zhuǎn)臺(tái)軸承的靜、動(dòng)態(tài)特性參數(shù)的影響,結(jié)果表明:隨著節(jié)流系數(shù)的增大阻尼系數(shù)減小,但節(jié)流系數(shù)大于某一數(shù)值后對(duì)承載力和剛度的影響不顯著,因而節(jié)流系數(shù)的選擇范圍可以適當(dāng)放寬;圓錐角越大軸承的軸向承載能力、剛度和阻尼系數(shù)越大,圓錐角越小軸承的徑向承載能力、阻尼和小偏心下徑向剛度系數(shù)越大;油腔尺寸越大,軸承的承載力和剛度也越大,但是軸承消耗的潤(rùn)滑油流量隨之增加,且軸承的阻尼系數(shù)有所降低。5.研究了自補(bǔ)償液體靜壓軸承在高速運(yùn)動(dòng)下的速度特性,結(jié)果表明:高速運(yùn)動(dòng)下流體的慣性會(huì)降低油膜力,但是動(dòng)壓效應(yīng)會(huì)增大油膜力,因而隨著轉(zhuǎn)速的提高軸承承載力增加,轉(zhuǎn)子的偏位角增大,流量有所減少;軸承的交叉剛度和正交阻尼均隨著轉(zhuǎn)速升高而增大,轉(zhuǎn)速較高偏心較大時(shí)軸承在受載方向可能出現(xiàn)負(fù)的正交剛度;節(jié)流系數(shù)選擇最好在最佳節(jié)流系數(shù)附近取值,過(guò)大或過(guò)小的節(jié)流系數(shù)均可能對(duì)軸承的承載力、剛度和阻尼不利,但對(duì)穩(wěn)定閾值的影響不顯著;在小偏心下自補(bǔ)償液體靜壓軸承的穩(wěn)定質(zhì)量閾值遠(yuǎn)大于毛細(xì)管或者小孔節(jié)流軸承,但是在大偏心下其穩(wěn)定性不如傳統(tǒng)的固定節(jié)流方式。6.研究了制造誤差對(duì)自補(bǔ)償液體靜壓軸承性能的影響,結(jié)果表明尺寸誤差、軸承圓錐不同軸和節(jié)流環(huán)裝配偏斜均會(huì)降低軸承的承載能力。制造了一臺(tái)自補(bǔ)償液體靜壓轉(zhuǎn)臺(tái)樣機(jī),并對(duì)其靜剛度和運(yùn)動(dòng)精度進(jìn)行了測(cè)試,供油壓力1MPa條件下其初始狀態(tài)的軸向剛度約為220N/μm,徑向剛度約為120N/μm,運(yùn)動(dòng)精度優(yōu)于0.4μm,要想充分發(fā)揮自補(bǔ)償液體靜壓軸承的剛度和精度優(yōu)勢(shì),必須提高軸承的制造精度。
[Abstract]:The development of ultra-precision machining technology and ultra-precision machine tools has put forward higher requirements for static and dynamic characteristics of machine tool shafting. Hydrostatic bearing is the only support mode which can realize high precision, high stiffness and large damping, so it has irreplaceable advantages in high-performance precision machine tools. This paper focuses on the application of hydrostatic turntable and spindle, designs a self-compensating hydrostatic bearing, and studies its static and dynamic characteristics by finite element method. Finally, it is applied to the hydrostatic turntable and its stiffness and operation are tested. The main purpose of this paper is to systematically study the design method, calculation theory and characteristic parameters of self-compensating conical hydrostatic bearing, and to provide theoretical guidance for the development of high precision, high stiffness and large damping hydrostatic turntable and spindle system. A self-compensating hydrostatic bearing with angular throttle is designed. The traditional structure of self-compensating hydrostatic bearing is introduced into the self-compensating bearing with angular throttle, thus avoiding the diffusion of lubricant on the throttle surface and increasing the axial length without introducing the self-compensating structure of opposing oil pad. This type of bearing has the advantages of compact structure, simple parts, easy modular design and production, and the bearing performance only needs clearance to ensure, so it is possible to achieve high stiffness and precision, which is suitable for precision machine tool shafting applications. 2. The theoretical model of self-compensating conical hydrostatic bearing is established, and the static and dynamic characteristics of the bearing are studied based on the theory of small disturbance. The results show that the bearing capacity of the self-compensating hydrostatic bearing is higher than that of the fixed throttle bearing, and the stiffness coefficient of the self-compensating hydrostatic bearing is greater than that of the fixed throttle bearing under the condition of small eccentricity. The damping coefficient of radial self-compensating hydrostatic bearing is larger than that of fixed throttle bearing, and the damping coefficient of axial self-compensating hydrostatic bearing is between capillary/slit throttle and orifice throttle bearing. The optimum throttle ratio in axial direction is 2, and the optimum throttle ratio in radial direction is a function of the internal flow coefficient, which is less than 2. The conditions of reducing the power consumption of the bearing as far as possible are discussed according to the power equation. The results show that the selection of bearing clearance and lubricating oil viscosity can not be too small. 4. The initial throttle ratio is studied. The results show that the damping coefficient decreases with the increase of throttling coefficient, but the influence of throttling coefficient on bearing capacity and stiffness is not significant when the throttling coefficient is greater than a certain value, so the choosing range of throttling coefficient can be widened appropriately. The larger the taper angle, the greater the axial bearing capacity, the greater the stiffness and damping coefficient, the smaller the taper angle, the greater the radial bearing capacity and the radial stiffness coefficient under damping and small eccentricity; the bigger the oil chamber size, the greater the bearing bearing capacity and stiffness, but the flow of lubricant consumed by the bearing increases, and the damping coefficient of the bearing decreases. 5. The velocity characteristics of the self-compensating hydrostatic bearing under high speed motion are studied. The results show that the inertia of the fluid will reduce the oil film force, but the dynamic pressure effect will increase the oil film force. Therefore, with the increase of the rotational speed, the bearing bearing capacity will increase, the rotor offset angle will increase, and the flow rate will decrease. When the rotational speed is higher and the eccentricity is bigger, the bearing may have negative orthogonal stiffness in the direction of loading; the throttling coefficient should be selected near the optimum throttling coefficient, too large or too small throttling coefficient may be unfavorable to bearing capacity, stiffness and damping, but the influence on stability threshold is not significant in small. The stability quality threshold of self-compensating hydrostatic bearing under eccentricity is much larger than that of capillary or orifice throttle bearing, but its stability is not as good as that of traditional fixed throttle bearing under large eccentricity. A prototype of self-compensating hydrostatic turntable was manufactured and its static stiffness and motion accuracy were tested. The axial stiffness and radial stiffness in the initial state were about 220N/micron, 120N/micron and the motion accuracy was better than 0.4 micron under the condition of 1 MPa oil supply pressure. The accuracy and accuracy of bearing bearing must be improved.
【學(xué)位授予單位】:國(guó)防科學(xué)技術(shù)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2013
【分類號(hào)】:TH133.36;TG502.3

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 ;液體靜壓軸承在我廠舊設(shè)備改造中的應(yīng)用[J];機(jī)床與液壓;1977年02期

2 關(guān)成業(yè);;重載液體靜壓軸承的一種設(shè)計(jì)方法——冷軋鋼機(jī)應(yīng)用液體靜壓軸承的試驗(yàn)[J];鞍鋼技術(shù);1978年01期

3 胡惜時(shí);;外間隙節(jié)流液體靜壓軸承的設(shè)計(jì)計(jì)算[J];磨床與磨削;1979年03期

4 丁振乾;王騰芳;;薄膜節(jié)流液體靜壓軸承的新結(jié)構(gòu)[J];磨床與磨削;1979年03期

5 周政;;液體靜壓軸承高速電動(dòng)砂輪軸[J];磨床與磨削;1981年04期

6 賀偉超;新型液體靜壓軸承[J];機(jī)床;1984年05期

7 毛書(shū)越;林云春;;高精度液體靜壓軸承設(shè)計(jì)中若干問(wèn)題的探討[J];航空精密機(jī)械工程;1984年02期

8 鄭州工學(xué)院機(jī)械系零件組;精鏜頭液體靜壓軸承的設(shè)計(jì)與應(yīng)用[J];組合機(jī)床通訊;1977年04期

9 李明釗;;液體靜壓軸承在舊機(jī)床改造中的幾個(gè)工藝技術(shù)問(wèn)題[J];設(shè)備維修;1981年02期

10 ;在內(nèi)孔磨床上應(yīng)用液體靜壓軸承[J];北京機(jī)械;1981年07期

相關(guān)會(huì)議論文 前4條

1 姜麗;;液體靜壓軸承的安裝調(diào)試[A];中國(guó)機(jī)械工程學(xué)會(huì)摩擦學(xué)分會(huì)潤(rùn)滑技術(shù)專業(yè)委員會(huì)第七屆學(xué)術(shù)年會(huì)論文集[C];2000年

2 丁敘生;;有周向回油槽液體靜壓軸承的優(yōu)化設(shè)計(jì)[A];第一屆全國(guó)流體動(dòng)力及控制工程學(xué)術(shù)會(huì)議論文集(第二卷)[C];2000年

3 梁春棠;;溝槽節(jié)流液體靜壓軸承優(yōu)化設(shè)計(jì)[A];摩擦學(xué)第四屆全國(guó)學(xué)術(shù)交流會(huì)論文集(第一冊(cè))[C];1987年

4 余順;陳庭;李志明;;數(shù)控凸輪磨床高剛度液體靜壓軸承磨頭的研究[A];12省區(qū)市機(jī)械工程學(xué)會(huì)2006年學(xué)術(shù)年會(huì)湖北省論文集[C];2006年

相關(guān)博士學(xué)位論文 前1條

1 佐曉波;超精密機(jī)床自補(bǔ)償液體靜壓軸承設(shè)計(jì)與特性研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2013年

相關(guān)碩士學(xué)位論文 前7條

1 楊忠君;基于MATLAB Web Server的液體靜壓軸承和導(dǎo)軌的遠(yuǎn)程設(shè)計(jì)系統(tǒng)[D];哈爾濱工業(yè)大學(xué);2006年

2 李珂;固定節(jié)流式液體靜壓軸承性能優(yōu)化設(shè)計(jì)及計(jì)算機(jī)輔助設(shè)計(jì)[D];華南理工大學(xué);2013年

3 李夢(mèng)陽(yáng);圓錐液體靜壓軸承熱態(tài)性能研究[D];中國(guó)工程物理研究院;2014年

4 姜洪濱;直線振動(dòng)臺(tái)上液體靜壓軸承的優(yōu)化設(shè)計(jì)及實(shí)驗(yàn)研究[D];遼寧科技大學(xué);2006年

5 喻陽(yáng)春;液體靜壓軸承試驗(yàn)臺(tái)設(shè)計(jì)及油膜承載性能分析[D];華中科技大學(xué);2014年

6 劉雷;臥式數(shù)控鏜銑床TK6916DA主軸液體靜壓軸承的研究[D];哈爾濱工業(yè)大學(xué);2009年

7 徐錚;專用磨床靜壓支承系統(tǒng)分析與仿真[D];蘭州理工大學(xué);2009年

,

本文編號(hào):2209286

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/jixiegongcheng/2209286.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶1da9f***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com