基于雙平面研磨方式的圓柱零件運動分析及工藝優(yōu)化研究
本文選題:圓柱零件 + 雙平面研磨; 參考:《浙江工業(yè)大學》2012年碩士論文
【摘要】:高精度、高一致性圓柱滾子(圓柱零件)是高精度軸承的關鍵基礎元件,廣泛應用于精密軸承、能源機械、國防尖端裝備中。目前,圓柱零件普遍采用無心磨削加工,然而傳統(tǒng)加工方法難以獲得較高的精度和一致性,這使得圓柱零件在高端領域的應用受到了限制。為解決傳統(tǒng)加工方法的缺陷,本文提出了一種雙平面研磨加工方法。通過控制圓柱零件的自轉,利用誤差勻化的原理保證了各圓柱面的切削等概率性,在保證加工效率的同時實現(xiàn)了圓柱零件高精度和高一致性的加工。研磨軌跡線對研磨均勻性有重要意義,本文通過研究圓柱零件、研磨盤與行星輪的運動關系,采用矩陣圖形變換法建立了基于雙平面研磨方式的圓柱零件的運動學方程。采用MATLAB對建立的運動方程進行仿真,分析各研磨軌跡線的均勻性和軌跡密度的分布狀況,確定轉速wp=40-65rpm、傳動比m-1,-0.3m0.3,0.3m1,-1m-0.3、研磨半徑Rp=100-140mm等工藝參數(shù)范圍內研磨軌跡線均勻且密集。采用ADAMS建立研磨運動學模型,仿真圓柱零件表面研磨軌跡,進一步分析在上述參數(shù)范圍內精確的參數(shù)組合。采用ADAMS仿真直接繪出軌跡曲線和MATLAB對從ADAMS導出的坐標、速度數(shù)據(jù)進行精確數(shù)值分析相結合的方法,以研磨軌跡均勻性為目標獨創(chuàng)性的建立了圓柱零件表面研磨均勻性的評價方法,利用此方法確定了轉速wp=45、60rpm,傳動比m=-5、-0.5、5,研磨半徑Rp=125mm、加載壓力F=1-3N為較優(yōu)的工藝參數(shù)組合;谏鲜龅姆治鼋Y果,進行實驗驗證,并對研磨工藝參數(shù)進行評價及再優(yōu)化,實驗分析發(fā)現(xiàn)傳動比、磨料粗細、磨盤轉速等工藝參數(shù)對圓柱零件的精密加工有關鍵影響,通過影響因素實驗分析和正交實驗分析得出傳動比在m=-5、轉速在45rpm、加載壓力F=1.5N/工件、磨粒在4000#以及磨粒濃度在25%時,研磨軌跡線比較密集均勻,可使得圓度、直線度及平行度均在1um以下的目標,也是本文優(yōu)化后最佳的工藝參數(shù)組合。
[Abstract]:High precision, high consistency cylindrical roller (cylindrical parts) is the key element of high precision bearing, widely used in precision bearings, energy machinery, national defense sophisticated equipment. At present, cylindrical parts are generally processed by centerless grinding. However, the traditional machining methods are difficult to obtain high accuracy and consistency, which limits the application of cylindrical parts in the high-end field. In order to solve the defects of traditional machining methods, a double-plane grinding method is proposed in this paper. By controlling the rotation of cylindrical parts, the principle of error homogenization is used to ensure the equal probability of cutting each cylindrical surface, and the machining efficiency is guaranteed, and the machining of cylindrical parts with high accuracy and consistency is realized at the same time. The grinding trajectory is of great significance to the uniformity of grinding. In this paper, the kinematics equations of cylindrical parts based on double plane grinding are established by studying the kinematic relationship between cylindrical parts, grinding disks and planetary wheels. The equation of motion was simulated by MATLAB, and the uniformity and distribution of track density of each grinding track line were analyzed. It was determined that the rotation speed was 40 ~ 65rpm, the transmission ratio was m ~ (-1) ~ (-3) m ~ (0.3) ~ (0.3) m ~ (-1) ~ (-1) m ~ (-3), the grinding radius was 100 ~ (-140 mm) mm, and the grinding track line was uniform and dense. The kinematics model of grinding is established by Adams, and the grinding track of cylindrical parts is simulated, and the precise parameter combination in the range of above parameters is further analyzed. By using Adams simulation to draw the trajectory curve directly and MATLAB to carry out accurate numerical analysis of coordinate and velocity data derived from Adams, the method of combining the accurate numerical analysis of the coordinate and velocity data derived from Adams is presented. The evaluation method of surface grinding uniformity of cylindrical parts is established with the aim of the uniformity of grinding track as the object. By using this method, the optimum process parameters such as rotating speed wpf45rpm, transmission ratio m5- 5- 0.5mm, grinding radius Rp1 125mm and loading pressure F1-3N are determined as the better process parameters. Based on the above analysis results, the experimental results are verified, and the grinding process parameters are evaluated and optimized. The experimental results show that the transmission ratio, the abrasive thickness, the rotating speed of the grinding disc and other technological parameters have a key effect on the precision machining of cylindrical parts. By means of experimental analysis and orthogonal experiment, it is found that the grinding trajectory is dense and uniform when the transmission ratio is at mU -5, the rotational speed is at 45rpm, the pressure is F _ (1.5) N / workpiece, the abrasive particle is at 4000# and the abrasive particle concentration is 25%, which can make the degree of roundness. The straightness and parallelism are all below 1um, which is the best process parameter combination after optimization in this paper.
【學位授予單位】:浙江工業(yè)大學
【學位級別】:碩士
【學位授予年份】:2012
【分類號】:TH133.3
【相似文獻】
相關期刊論文 前10條
1 朱訓生;薛秉源;;九種計算圓柱度的近似方法及其較比[J];現(xiàn)代機械;1990年02期
2 孟祥成,王俊偉,張威;內孔圓柱度的電子測量[J];機械工人.冷加工;2004年05期
3 XZ田忠夫;姜鳳鶴;;圓柱度的新測量法[J];國外計量;1981年03期
4 韓渭鑫;;薄壁氣缸套磨削后圓柱度的超差及其預防[J];機械工藝師;1985年03期
5 雷繼輝;關福州;;高精度圓柱角尺的加工工藝改進[J];金屬加工(冷加工);2014年02期
6 顧開顏;;一種提高圓柱度的外圓磨削新技術[J];磨床與磨削;1991年04期
7 慕道增;李文祥;;珩磨頭行程調整對被加工孔圓柱度的影響[J];機械工程師;2012年03期
8 朱玉永,武萬紅;與《圓柱度智能檢測系統(tǒng)》一文商榷[J];計量技術;1995年07期
9 宋淑娥;施志輝;;軸箱體內孔加工圓柱度超差分析及夾緊力計算[J];組合機床與自動化加工技術;2008年04期
10 杜紹先;;怎樣預防珩孔時圓度及圓柱度超差[J];機械工人.冷加工;2006年07期
相關會議論文 前1條
1 劉巖;左春檉;丁光正;栗利剛;文偉力;;大型圓柱工件非接觸測量方法研究[A];第八屆中國軋機油膜軸承技術研討會論文集[C];2006年
相關重要報紙文章 前1條
1 白陽;以微米為尺度的珩研高手[N];中國航空報;2003年
相關碩士學位論文 前1條
1 任玉剛;基于雙平面研磨方式的圓柱零件運動分析及工藝優(yōu)化研究[D];浙江工業(yè)大學;2012年
,本文編號:2032592
本文鏈接:http://www.sikaile.net/kejilunwen/jixiegongcheng/2032592.html