基于經(jīng)驗(yàn)?zāi)B(tài)分解的滾動(dòng)軸承故障振動(dòng)信號(hào)消噪研究
本文選題:滾動(dòng)軸承 + 振動(dòng)信號(hào) ; 參考:《湖南科技大學(xué)》2012年碩士論文
【摘要】:在復(fù)雜多變的工業(yè)現(xiàn)場(chǎng),滾動(dòng)軸承具有高事故率、故障高危險(xiǎn)性。為有效保障生產(chǎn)效率和人員安全,對(duì)滾動(dòng)軸承出現(xiàn)的故障進(jìn)行高效、快捷、準(zhǔn)確的識(shí)別和診斷就顯得非常重要。然而滾動(dòng)軸承因運(yùn)行環(huán)境復(fù)雜而使得故障診斷中采集的振動(dòng)信號(hào)被噪聲湮沒(méi),給故障特征提取帶來(lái)極大的不便,尤其在故障特征微弱或是故障發(fā)生早期。有效實(shí)現(xiàn)滾動(dòng)軸承的故障振動(dòng)信號(hào)消噪,并且研究分析適合于滾動(dòng)軸承故障振動(dòng)信號(hào)的消噪方法,,對(duì)有效提高滾動(dòng)軸承設(shè)備狀態(tài)監(jiān)測(cè)和故障診斷的精度和效率具有重要的意義。 首先,對(duì)滾動(dòng)軸承的正常軸承、內(nèi)圈故障、外圈故障和滾珠故障的振動(dòng)信號(hào)和噪聲情況進(jìn)行對(duì)比,分析軸承振動(dòng)噪聲的分布、能量特性。 其次,提出了基于自相關(guān)和閾值的經(jīng)驗(yàn)?zāi)B(tài)分解消噪方法。在分析經(jīng)驗(yàn)?zāi)B(tài)分解方法的消噪性能后,采用噪聲自相關(guān)特性識(shí)別噪聲模態(tài)和并對(duì)其閾值處理,以實(shí)現(xiàn)信號(hào)重構(gòu)消噪的方法,可以有效識(shí)別經(jīng)驗(yàn)?zāi)B(tài)分解后各模態(tài)分量中噪聲占主導(dǎo)的模態(tài)分量,和盡可能減少信號(hào)重構(gòu)時(shí)有用成分損失。并用仿真信號(hào)驗(yàn)證本方法的消噪效果。 再次,提出了基于自相關(guān)集成經(jīng)驗(yàn)?zāi)B(tài)分解消噪和基于自適應(yīng)的集成經(jīng)驗(yàn)?zāi)B(tài)分解消噪方法。采用克服了模態(tài)混疊問(wèn)題的集成經(jīng)驗(yàn)?zāi)B(tài)分解方法,結(jié)合自相關(guān)分選和閾值處理,實(shí)現(xiàn)集成經(jīng)驗(yàn)?zāi)B(tài)分解的消噪;在分析信號(hào)模態(tài)中噪聲能量的特點(diǎn),自適應(yīng)生成閾值實(shí)現(xiàn)消噪處理,從而提出自適應(yīng)的集成經(jīng)驗(yàn)?zāi)B(tài)分解消噪。采用仿真信號(hào)驗(yàn)證了集成經(jīng)驗(yàn)?zāi)B(tài)分解消噪的性能。 最后,對(duì)滾動(dòng)軸承內(nèi)圈故障振動(dòng)信號(hào)和外圈故障振動(dòng)信號(hào)進(jìn)行消噪分析,并與常用消噪方法作對(duì)比,本文所提新方法能有效識(shí)別軸承故障特征頻率和工頻,具有比常用方法更好的消噪效果。 本文通過(guò)對(duì)滾動(dòng)軸承故障振動(dòng)信號(hào)和噪聲分析,使用改進(jìn)的經(jīng)驗(yàn)?zāi)B(tài)分解消噪方法對(duì)滾動(dòng)軸承故障振動(dòng)信號(hào)進(jìn)行有效消噪,為滾動(dòng)軸承狀態(tài)監(jiān)測(cè)和故障診斷提供有效的信號(hào)預(yù)處理方法。
[Abstract]:In complex and changeable industrial field, rolling bearing has high accident rate and high fault risk. In order to ensure production efficiency and personnel safety, it is very important to identify and diagnose the faults of rolling bearings efficiently, quickly and accurately. However, because of the complex running environment, the vibration signal collected in fault diagnosis is obliterated by noise, which brings great inconvenience to fault feature extraction, especially in the early stage of fault feature weak or fault. The de-noising of the fault vibration signal of rolling bearing is realized effectively, and the method of de-noising suitable for the fault vibration signal of rolling bearing is studied and analyzed. It is of great significance to improve the accuracy and efficiency of condition monitoring and fault diagnosis of rolling bearing equipment. Firstly, the vibration signal and noise of normal bearing, inner ring fault, outer ring fault and ball fault of rolling bearing are compared. The distribution and energy characteristics of bearing vibration noise are analyzed. Secondly, an empirical mode decomposition de-noising method based on autocorrelation and threshold is proposed. After analyzing the denoising performance of the empirical mode decomposition method, the noise mode is identified by the noise autocorrelation characteristic and the threshold value is processed to realize the de-noising method of signal reconstruction. It can effectively identify the noise-dominated modal components after empirical mode decomposition and minimize the loss of useful components in signal reconstruction. Simulation signals are used to verify the denoising effect of the proposed method. Thirdly, an integrated empirical mode decomposition de-noising method based on autocorrelation and an adaptive integrated empirical mode decomposition de-noising method are proposed. The method of integrated empirical mode decomposition, which overcomes the problem of modal aliasing, is adopted to realize the de-noising of integrated empirical mode decomposition by combining autocorrelation sorting and threshold processing, and the characteristics of noise energy in signal modes are analyzed. Adaptive threshold is generated to realize denoising, and an adaptive integrated empirical mode decomposition (EMD) is proposed. The performance of integrated empirical mode decomposition (EMD) de-noising is verified by simulation signal. Finally, the de-noising signal of inner ring fault vibration signal and outer ring fault vibration signal of rolling bearing is analyzed, and compared with the usual de-noising method. The new method proposed in this paper can effectively identify the bearing fault characteristic frequency and power frequency, and has better denoising effect than the usual method. The vibration signal and noise of rolling bearing fault are analyzed in this paper. The improved empirical mode decomposition (EMD) denoising method is used to effectively de-noise the rolling bearing fault vibration signal, which provides an effective signal preprocessing method for the rolling bearing condition monitoring and fault diagnosis.
【學(xué)位授予單位】:湖南科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2012
【分類號(hào)】:TH165.3;TN911.7
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 杜修力;何立志;侯偉;;基于經(jīng)驗(yàn)?zāi)B(tài)分解(EMD)的小波閾值除噪方法[J];北京工業(yè)大學(xué)學(xué)報(bào);2007年03期
2 黃浩;胡峰;;基于經(jīng)驗(yàn)?zāi)B(tài)分解的電能質(zhì)量信號(hào)消噪新方法[J];長(zhǎng)沙電力學(xué)院學(xué)報(bào)(自然科學(xué)版);2006年04期
3 劉曉平;鄭海起;張訓(xùn)敏;;粒子濾波在軸承故障振動(dòng)信號(hào)降噪中的應(yīng)用[J];軸承;2010年09期
4 邢麗華;鄂加強(qiáng);禚爰紅;田新新;;基于經(jīng)驗(yàn)?zāi)B(tài)分解方法的柴油機(jī)振動(dòng)信號(hào)去噪聲處理[J];柴油機(jī)設(shè)計(jì)與制造;2008年01期
5 賈嶸;徐其惠;田錄林;李輝;劉偉;;基于經(jīng)驗(yàn)?zāi)B(tài)分解和固有模態(tài)函數(shù)重構(gòu)的局部放電去噪方法[J];電工技術(shù)學(xué)報(bào);2008年01期
6 趙雯雯;曾興雯;;一種新的EMD去噪方法[J];電子科技;2008年05期
7 黃一樣;申群太;;小波消噪在滾動(dòng)軸承故障診斷的應(yīng)用研究[J];儀器儀表用戶;2009年03期
8 夏新濤,王中宇,孫立明,趙聯(lián)春;6203-2RZ軸承振動(dòng)與噪聲關(guān)系的實(shí)驗(yàn)研究[J];中國(guó)工程科學(xué);2003年08期
9 董士偉;周子勇;;基于經(jīng)驗(yàn)?zāi)B(tài)分解的高光譜遙感數(shù)據(jù)去噪方法[J];光譜實(shí)驗(yàn)室;2010年03期
10 吳凡;;狀態(tài)監(jiān)測(cè)和故障診斷技術(shù)的現(xiàn)狀與展望[J];國(guó)外電子測(cè)量技術(shù);2006年03期
相關(guān)會(huì)議論文 前1條
1 李興林;;滾動(dòng)軸承故障診斷技術(shù)現(xiàn)狀及發(fā)展[A];2009年全國(guó)青年摩擦學(xué)學(xué)術(shù)會(huì)議論文集[C];2009年
相關(guān)碩士學(xué)位論文 前1條
1 王俊杰;基于本體論的軸承噪聲分析系統(tǒng)研究[D];浙江大學(xué);2005年
本文編號(hào):1994108
本文鏈接:http://www.sikaile.net/kejilunwen/jixiegongcheng/1994108.html