大柔度動臂式塔機的動靜態(tài)剛度問題研究
發(fā)布時間:2018-05-17 08:51
本文選題:大柔度動臂式塔機 + 靜態(tài)剛度; 參考:《哈爾濱工業(yè)大學》2012年碩士論文
【摘要】:隨著高強度結構鋼材的普遍使用,動臂式塔機朝著大型重載、輕質高速度方向發(fā)展的同時,其剛度卻相對減少。為此,計及構件柔性變形的非線性力學分析更多地為人們所關注。本文綜合考慮分析了多種因素對動臂式塔機動靜態(tài)剛度的影響,基于非線性理論,分別獲得了計算大柔度動臂式塔機靜態(tài)剛度和動態(tài)剛度的高精度、便捷、實用表達式,并給出了兩者相互關系式。 充分考慮了格構式構件腹桿的影響,建立動臂式塔機的實腹等效模型。在多種復雜載荷作用下,基于非線性理論建立柔性動臂式塔機側向位移分析的力學模型,推導出塔身端部側向位移精確解析表達式。在精確解析表達式基礎上,給出便于工程應用習慣的側向位移實用便捷算式及其撓度放大系數(shù)和計算長度系數(shù)的表達式。對計算長度系數(shù)進行分析,得出在起重力矩一定時,側向位移和撓度放大系數(shù)分別隨吊臂仰角增加而增加的規(guī)律。分析了動臂式塔機自重及吊臂對塔機靜態(tài)剛度計算結果的影響,明確了自重及吊臂在靜態(tài)剛度計算分析中的重要性。 根據(jù)動能等效原則,建立了動臂式塔機平面內點頭頻率的單自由度模型,大大降低了計算量,提高了計算效率。與傳統(tǒng)的做法相比,塔身等效時考慮了腹桿影響,,并考慮了軸力對塔身剛度的削弱,計入撓度放大系數(shù),提高了模型的計算精度。建立了動臂式塔機動靜態(tài)剛度的之間相互關系式。 通過典型動臂式塔機實例計算分析表明,采用本文中的公式計算動臂式塔機靜態(tài)剛度和動態(tài)剛度的結果與通用有限元軟件ANSYS的計算結果基本吻合,體現(xiàn)了本文方法的精確性,符合工程及科研的計算分析要求。本文的結果可為起重機設計規(guī)范中關于動臂式塔機動靜態(tài)剛度的計算及對大柔度動臂式塔機力學計算分析提供理論依據(jù)。
[Abstract]:With the widespread use of high strength structural steel, the stiffness of the movable arm tower crane is relatively reduced while it is developed towards the direction of heavy load and light weight and high speed. For this reason, nonlinear mechanical analysis of flexible deformation of members has attracted more and more attention. In this paper, the influence of many factors on the dynamic and static stiffness of the movable arm tower crane is analyzed synthetically. Based on the nonlinear theory, the high precision, convenient and practical expressions for calculating the static and dynamic stiffness of the movable arm tower crane with large flexibility are obtained, respectively. The relationship between them is given. The full web equivalent model of the movable arm tower crane is established by considering the influence of the web bar of the latticed member. Based on nonlinear theory, a mechanical model for lateral displacement analysis of flexible movable arm tower crane is established under various complex loads, and an accurate analytical expression of lateral displacement at the end of tower body is derived. On the basis of the exact analytical expression, the practical and convenient formula of lateral displacement and the expressions of the deflection magnification factor and the calculating length coefficient are given, which are convenient for engineering application. Based on the analysis of the calculated length coefficient, the law that the lateral displacement and deflection magnification coefficient increase with the elevation angle of the boom is obtained when the lifting moment is fixed. The influence of dead weight and boom on the calculation results of static stiffness of tower crane is analyzed, and the importance of dead weight and boom in static stiffness calculation is clarified. According to the principle of kinetic energy equivalence, a single degree of freedom model of nodding frequency in the plane of a movable arm tower crane is established, which greatly reduces the calculation amount and improves the calculation efficiency. Compared with the traditional method, the web member is considered when the tower body is equivalent, and the axial force is considered to weaken the stiffness of the tower body, and the deflection magnification factor is taken into account to improve the calculation accuracy of the model. The relationship between the dynamic and static stiffness of the movable arm tower crane is established. Through the calculation and analysis of a typical movable arm tower crane, it is shown that the results of static and dynamic stiffness calculated by the formula in this paper are in good agreement with those of the general finite element software ANSYS, which reflects the accuracy of the method in this paper. Meet the requirements of calculation and analysis of engineering and scientific research. The results of this paper can provide a theoretical basis for the calculation of the dynamic and static stiffness of the crane in the design code of the crane and for the mechanical calculation and analysis of the movable boom tower crane with large flexibility.
【學位授予單位】:哈爾濱工業(yè)大學
【學位級別】:碩士
【學位授予年份】:2012
【分類號】:TH213.3
【參考文獻】
相關期刊論文 前10條
1 成凱;王鋅;趙二飛;丁美蓮;;履帶起重機履帶架的非線性有限元分析[J];中國工程機械學報;2009年01期
2 劉郁馨,孫偉;塔式起重機塔身的幾何非線性研究[J];工程機械;1991年04期
3 夏擁軍,陸念力,羅冰;確定塔式起重機結構低階振頻的實用方法[J];工程機械;2005年04期
4 蘭朋,陸念力,李以申;多跨壓桿非線性變形與穩(wěn)定計算的精確遞推公式[J];哈爾濱建筑大學學報;1997年04期
5 陸念力,王友海,孟曉平;空間桁架單元精確全量平衡方程及切線剛度[J];哈爾濱建筑大學學報;1998年01期
6 劉志軍;用非線性分析技術分析塔機靜態(tài)剛性[J];建設機械技術與管理;2004年12期
7 孫偉;劉郁馨;;塔機塔身非線性變形表達式及分析[J];建筑機械化;1989年09期
8 林貴瑜;史勇;;動臂塔式起重機及其發(fā)展趨勢[J];建筑機械化;2007年12期
9 陸念力,張立強,孟小平;梁桿系統(tǒng)臨界屈曲精確有限元判式及其應用[J];建筑機械化;1996年06期
10 藺建國;動臂塔機在國外的發(fā)展及應用[J];建筑機械;2001年11期
本文編號:1900738
本文鏈接:http://www.sikaile.net/kejilunwen/jixiegongcheng/1900738.html
教材專著