兆瓦級風(fēng)力機葉片初步設(shè)計中的多學(xué)科優(yōu)化設(shè)計方法研究
本文選題:風(fēng)力機葉片 + 可靠性 ; 參考:《浙江工業(yè)大學(xué)》2011年碩士論文
【摘要】:葉片是風(fēng)力機的核心部件,隨著風(fēng)力機向大型化發(fā)展,兆瓦級風(fēng)力機葉片對可靠性和質(zhì)量都提出了更高的要求,傳統(tǒng)的葉片設(shè)計方法往往將氣動設(shè)計和結(jié)構(gòu)設(shè)計分離開來,在設(shè)計時注重保證風(fēng)能效率的最大化,使得葉片質(zhì)量較大,從而導(dǎo)致了較高的風(fēng)能成本。另一方面,隨著新型材料以及新型制造工藝的發(fā)展,傳統(tǒng)的安全系數(shù)法的可能過于保守或者不安全。基于多學(xué)科可靠性優(yōu)化設(shè)計方法,本文提出綜合考慮氣動性能與結(jié)構(gòu)強度,在保證可靠性的同時降低風(fēng)能成本。本文的主要工作和成果如下: (1)基于氣動性能的葉片氣動外形優(yōu)化設(shè)計,首先設(shè)計葉片的基本參數(shù),包括尖速比、翼型等,并計算獲得翼型的氣動數(shù)據(jù),然后利用葉素動量理論,對弦長和扭角進行優(yōu)化設(shè)計,初始葉片額定功率達2.65MW。 (2)基于結(jié)構(gòu)強度的風(fēng)力機葉片優(yōu)化設(shè)計,首先選擇葉片結(jié)構(gòu)形式和材料,然后基于安全系數(shù)法,建立優(yōu)化設(shè)計模型,對0。玻璃鋼鋪層厚度進行優(yōu)化設(shè)計。設(shè)計結(jié)果顯示葉片厚度和質(zhì)量分布符合實際情況且撓度比較小。 (3)基于一次二階矩法,建立了葉片彎曲應(yīng)力可靠性計算方法,探索了材料性能對可靠性的影響程度,結(jié)果發(fā)現(xiàn)材料強度的變異系數(shù)對可靠性影響最大。在此基礎(chǔ)上建立葉片可靠性優(yōu)化設(shè)計模型,再次對初始葉片的0。玻璃鋼鋪層厚度進行優(yōu)化設(shè)計,設(shè)計結(jié)果與基于安全系數(shù)法的設(shè)計結(jié)果吻合。 (4)基于XFOIL翼型氣動分析軟件和BEM理論,建立了由翼型相對厚度計算獲得額定功率的數(shù)學(xué)模型,為多學(xué)科可靠性優(yōu)化設(shè)計模型做了準(zhǔn)備。 (5)研究了葉片氣動性能和葉片質(zhì)量的耦合關(guān)系,葉片內(nèi)圈的額定功率隨翼型相對厚度先增加后減小,當(dāng)25%翼展處的翼型相對厚度為0.246時額定功率最大,葉片質(zhì)量則隨翼型相對厚度增大而減小。 (6)分別以風(fēng)能效率最大化、風(fēng)能效率成本最小和葉片質(zhì)量最小為設(shè)計目標(biāo),建立了基于多學(xué)科可靠性優(yōu)化設(shè)計模型,對葉片翼型相對厚度和0。玻璃鋼鋪層厚度進行優(yōu)化設(shè)計,優(yōu)化結(jié)果表明適當(dāng)犧牲葉片風(fēng)能效率,可大幅減輕葉片的質(zhì)量,從而降低風(fēng)能成本。
[Abstract]:On the other hand , with the development of new material and new manufacturing technology , the traditional safety factor method may be too conservative or unsafe . On the other hand , with the development of new material and new manufacturing technology , the traditional safety factor method may be too conservative or unsafe . On the other hand , with the development of new material and new manufacturing process , the traditional safety factor method may be too conservative or unsafe .
( 1 ) aerodynamic performance - based aerodynamic shape optimization design , first design the basic parameters of the blade , including the tip speed ratio , the airfoil , etc . , and calculate the aerodynamic data of the airfoil , then use the blade momentum theory to optimize the chord length and twist angle , and the rated power of the initial blade reaches 2.65MW .
( 2 ) Based on the structural strength of wind turbine blade optimization design , first select the form and material of the blade structure , then establish the optimal design model based on the safety factor method , and optimize the thickness of the layer of 0 . The design results show that the blade thickness and mass distribution meet the actual situation and the deflection is relatively small .
( 3 ) Based on the second - order moment method , the reliability calculation method of blade bending stress is established , and the influence degree of material performance on reliability is explored .
( 4 ) Based on the aerodynamic analysis software and BEM theory of XFOIL airfoil , a mathematical model for obtaining the rated power from the relative thickness of the airfoil is established , which is prepared for the multi - disciplinary reliability optimization design model .
( 5 ) The coupling relation of aerodynamic performance and blade mass is studied . The rated power of the inner ring of the blade decreases with the increase of the relative thickness of the airfoil . When the relative thickness of the airfoil at 25 % span is 0.246 , the rated power is the largest , and the blade mass decreases with the increase of the relative thickness of the airfoil .
( 6 ) Based on the maximum wind energy efficiency , the minimum cost of wind energy efficiency and the minimum blade quality , a multi - disciplinary reliability optimization design model is established , the relative thickness of the blade airfoil and the thickness of the layer of glass fiber are optimized , and the optimization results show that the wind energy efficiency of the blades is properly sacrificed , and the quality of the blades can be greatly reduced , so that the wind energy cost can be reduced .
【學(xué)位授予單位】:浙江工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2011
【分類號】:TH43
【參考文獻】
相關(guān)期刊論文 前10條
1 謝曉芳;卞子罕;;國外風(fēng)力機葉片材料的新進展[J];玻璃鋼;2006年04期
2 李成良;陳淳;;風(fēng)力機葉片的結(jié)構(gòu)分析與鋪層優(yōu)化設(shè)計[J];玻璃鋼/復(fù)合材料;2009年06期
3 谷良賢,龔春林;多學(xué)科設(shè)計優(yōu)化方法比較[J];彈箭與制導(dǎo)學(xué)報;2005年01期
4 劉勛;魯慶華;訾宏達;孫偉軍;;2MW風(fēng)電機組葉片氣動性能計算方法的研究[J];電氣技術(shù);2009年08期
5 白井艷;楊科;李宏利;徐建中;;水平軸風(fēng)力機專用翼型族設(shè)計[J];工程熱物理學(xué)報;2010年04期
6 黃洪鐘;余輝;袁亞輝;張小玲;李彥鋒;;基于單學(xué)科可行法的多學(xué)科可靠性設(shè)計優(yōu)化[J];航空學(xué)報;2009年10期
7 池巧君;呂震宙;宋述芳;;截斷正態(tài)分布情況下結(jié)構(gòu)可靠性分析的方向抽樣和方向重要抽樣估計及其方差分析[J];機械強度;2010年03期
8 呂震宙,馮元生;重要抽樣法在工程可靠性分析問題中的應(yīng)用[J];機械強度;1997年01期
9 王平;鄭松林;吳光強;;基于協(xié)同優(yōu)化和多目標(biāo)遺傳算法的車身結(jié)構(gòu)多學(xué)科優(yōu)化設(shè)計[J];機械工程學(xué)報;2011年02期
10 劉周,朱自強,付鴻雁,吳宗成;高升阻比翼型的設(shè)計[J];空氣動力學(xué)學(xué)報;2004年04期
相關(guān)博士學(xué)位論文 前1條
1 李軍向;大型風(fēng)機葉片氣動性能計算與結(jié)構(gòu)設(shè)計研究[D];武漢理工大學(xué);2008年
相關(guān)碩士學(xué)位論文 前1條
1 雷翠翠;水泵葉片的多學(xué)科設(shè)計優(yōu)化理論與方法研究[D];揚州大學(xué);2009年
,本文編號:1778782
本文鏈接:http://www.sikaile.net/kejilunwen/jixiegongcheng/1778782.html