輪式裝載機前車架的有限元分析
本文選題:前車架 + 運動學仿真。 參考:《西北農林科技大學》2011年碩士論文
【摘要】:輪式裝載機是一種用途較廣的工程機械,主要對散料進行鏟裝,通常是在露天礦山或工程建設工地作業(yè),工作環(huán)境惡劣、復雜,在作業(yè)過程中結構件容易發(fā)生破壞失效。前車架作為裝載機支撐工作裝置的基礎件,其鉸接點的布局是否合理,會影響到工作裝置的工作性能。在作業(yè)過程中前車架會承受工作裝置傳來的載荷,在顛簸的路面行駛或者作業(yè)時,還會受到劇烈的沖擊載荷,容易發(fā)生破壞失效。所以在設計之初對工作裝置及前車架進行運動學和動力學仿真、對前車架進行強度分析顯得尤為重要。 本文運用三維軟件Pro/E建立裝載機工作裝置及前車架的三維模型,應用現(xiàn)代設計方法中的虛擬樣機技術和有限元分析方法來對其進行研究。 首先對裝載機作業(yè)過程中的受力情況進行分析,然后在多體動力學軟件ADAMS中建立虛擬樣機模型,對其進行了運動學和動力學仿真。運動學仿真主要分析工作過程中工作裝置各構件是否會發(fā)生干涉,得到其最大卸載高度以及運動軌跡等;動力學仿真則分為對稱載荷和偏載兩種不同情況,模擬裝載機連續(xù)、復合作業(yè)動作,得到了前車架與工作裝置各鉸接點的受力變化曲線,進而為前車架的有限元分析提供基礎數(shù)據(jù)。 再將前車架幾何模型導入到有限元分析軟件ANSYS中,建立有限元分析模型,根據(jù)裝載機作業(yè)過程中幾種典型工況,從動力學仿真結果中讀取前車架各鉸接點對應的受力,并以此作為載荷,對前車架進行靜強度分析,得到前車架在不同工況下的應力云圖和位移云圖。根據(jù)靜強度分析結果,確定了前車架結構中存在的危險點,進而對其進行局部結構的優(yōu)化改進,并分析了優(yōu)化結果的合理性。從得到的位移云圖和應力云圖可以看出,前車架結構的最大位移和應力均明顯的減小:正載、最大起掘力鏟掘工況下,最大應力值從優(yōu)化前的420Mpa降低到273Mpa,最大位移從1.568mm減少到1.158mm;偏載、最大牽引力水平插入工況下,最大應力值從優(yōu)化前的530Mpa降低到264Mpa,最大位移從2.684mm減少到1.979mm;偏載、最大起掘力鏟掘工況下,最大應力值從503Mpa降低到了307Mpa,最大位移從1.956mm減少到1.452mm。分析結果表明,結構優(yōu)化后前車架的應力和應變的分布更為合理。對前車架進行了模態(tài)分析,得到其固有頻率和固有振型,結合分析計算的輪式裝載機外部激振源的激振頻率,為前車架的進一步優(yōu)化設計和設計減振裝置提供依據(jù)。 通過對輪式裝載機工作裝置的虛擬仿真以及對前車架的有限元分析,為輪式裝載機的工作裝置及前車架的結構設計提供了理論支持。
[Abstract]:Wheel loader is a kind of widely used construction machinery. It mainly shovels the bulk materials, usually in open pit mines or engineering construction sites. The working environment is bad and complex, and the structural parts are prone to damage and failure in the process of operation.The front frame is the base part of the loader supporting working device, whether the layout of the hinge point is reasonable or not will affect the working performance of the working device.In the process of operation, the front frame will bear the load from the working device, and will be subjected to severe impact load when driving or working on the bumpy road surface, which is prone to damage and failure.So it is very important to simulate the kinematics and dynamics of the working device and the front frame at the beginning of the design, and to analyze the strength of the front frame.In this paper, the 3D model of loader working device and front frame is established by using 3D software Pro/E, and the virtual prototyping technology and finite element analysis method of modern design method are used to study it.Firstly, the loading condition of the loader during operation is analyzed, and then the virtual prototype model is established in the multi-body dynamics software ADAMS, and the kinematics and dynamics simulation is carried out.The kinematics simulation mainly analyzes whether the components of the working device will interfere in the working process, and obtains the maximum unloading height and motion track, etc. The dynamic simulation is divided into two different situations: symmetrical load and biased load.The stress change curves of each hinge point of front frame and working device are obtained by composite operation, and the basic data are provided for the finite element analysis of front frame.Then the geometric model of the front frame is introduced into the finite element analysis software ANSYS, and the finite element analysis model is established. According to several typical working conditions of the loader, the force corresponding to the hinge points of the front frame is read from the dynamic simulation results.The static strength of the front frame is analyzed and the stress cloud diagram and displacement cloud diagram of the front frame under different working conditions are obtained.According to the results of static strength analysis, the danger points in the front frame structure are determined, and the local structure is optimized and improved, and the rationality of the optimization results is analyzed.It can be seen from the obtained displacement cloud diagram and stress cloud diagram that the maximum displacement and stress of the front frame structure are obviously reduced: under the positive load, the maximum lifting force, the excavating condition,The maximum stress value was reduced from 420Mpa before optimization to 273Mpa.The maximum displacement was reduced from 1.568mm to 1.158mm, and the maximum stress value was reduced from 530Mpa before optimization to 264 Mpa. the maximum displacement was reduced from 2.684mm to 1.979mm.The maximum stress value is reduced from 503Mpa to 307 MPA and the maximum displacement is reduced from 1.956mm to 1.452 mm. under the condition of maximum lifting force shovel.The results show that the stress and strain distribution of the front frame is more reasonable after structural optimization.The modal analysis of the front frame is carried out, and the natural frequency and the natural mode are obtained. The vibration frequency of the external vibration source of the wheel loader is analyzed and calculated, which provides the basis for the further optimization design of the front frame and the design of the vibration absorber.Through the virtual simulation of the working device of the wheel loader and the finite element analysis of the front frame, the theoretical support is provided for the working device of the wheel loader and the structure design of the front frame.
【學位授予單位】:西北農林科技大學
【學位級別】:碩士
【學位授予年份】:2011
【分類號】:TH243
【參考文獻】
相關期刊論文 前10條
1 姚俊;裝載機工作裝置搖臂的有限元分析及優(yōu)化[J];工程機械;2000年11期
2 陳樹勛;梁光明;李會勛;;輪式裝載機前車架結構載荷計算、有限元分析與優(yōu)化設計[J];工程機械;2007年06期
3 胡桃華;宋德朝;;基于ANSYS的全液壓履帶裝載機車架有限元分析[J];機電一體化;2008年11期
4 朱海龍;王鳳花;劉旭亮;張淑娟;;基于Pro/E的圓柱齒輪減速器的三維造型和運動仿真[J];機械管理開發(fā);2008年02期
5 姬慧勇;秦宇飛;陳明宏;董德才;;鉸接式裝載機鏟斗運動軌跡仿真[J];計算機仿真;2007年02期
6 杜平安;有限元網格劃分的基本原則[J];機械設計與制造;2000年01期
7 王虎奇;陳樹勛;;基于ADAMS的裝載機前車架有限元分析載荷求解[J];機械設計與制造;2007年03期
8 鄭夕健;莽琦;謝正義;李鐵軍;;基于ADAMS的輪式裝載機運動學及動力學仿真分析[J];機械設計與制造;2009年02期
9 劉宏偉;;基于虛擬樣機技術的機器人運動學研究[J];機械設計與制造;2009年05期
10 蔡敢為;張磊;秦宇;任延舉;張小杭;;輪式裝載機工作機構動力學分析的有限元建模[J];機械傳動;2009年06期
相關碩士學位論文 前10條
1 曹超群;基于虛擬樣機的裝載機工作裝置的設計[D];大連理工大學;2004年
2 孫瑜;裝載機前車架有限元參數(shù)化建模方法[D];吉林大學;2005年
3 李會勛;CLG856型輪式裝載機前車架結構載荷計算、有限元分析與優(yōu)化設計[D];廣西大學;2006年
4 苑淑華;裝載機前車架參數(shù)化有限元分析技術研究[D];遼寧工程技術大學;2007年
5 王克軍;80型輪式裝載機結構部件性能分析[D];吉林大學;2008年
6 張立榮;基于有限元法ZL50裝載機鏟斗強度分析與結構優(yōu)化[D];山東理工大學;2008年
7 朱峰;裝載機結構件有限元分析與結構改進[D];吉林大學;2009年
8 萬燕波;基于高卸狀態(tài)下ZL50G裝載機工作裝置作業(yè)運動特性研究[D];重慶交通大學;2009年
9 鞏建強;裝載機工作裝置作業(yè)運動特性與動態(tài)載荷性能研究[D];重慶交通大學;2009年
10 鄭暉;裝載機工作裝置參數(shù)化3D建模及有限元分析[D];太原科技大學;2009年
,本文編號:1765982
本文鏈接:http://www.sikaile.net/kejilunwen/jixiegongcheng/1765982.html