基于CFD和FEM的超磁致伸縮驅動水壓伺服閥性能研究
發(fā)布時間:2018-02-14 18:38
本文關鍵詞: 超磁致伸縮 水壓傳動 伺服閥 CFD 有限元法 出處:《北京工業(yè)大學》2011年碩士論文 論文類型:學位論文
【摘要】:超磁致伸縮材料(GMM)是一種具有應變大、響應速度快、能量傳輸密度高、輸出力大等優(yōu)異性能的新型功能材料;诔胖律炜s驅動器(GMA),提出了一種新型的雙相對置超磁致伸縮自傳感驅動水壓伺服控制閥,并以此為研究對象,采用了計算流體力學(CFD)、有限元法(FEM)以及自動控制系統(tǒng)MATLAB動態(tài)仿真等方法,對所設計的雙相對置超磁致伸縮自傳感驅動水壓伺服閥進行了系統(tǒng)、深入的分析和研究。 基于流體力學中管道流動和各種典型節(jié)流口流動理論,對超磁致伸縮水壓伺服閥的液壓橋路進行了理論分析,建立了液壓橋路簡化模型和閥芯兩端壓差與擋板位移之間的關系式,驗證了后續(xù)仿真分析結果的正確性。利用CFD穩(wěn)態(tài)流技術研究了擋板和噴嘴前端面的壓力分布,以及閥芯兩端壓差隨著擋板位置的變化情況。 利用CFD動網(wǎng)格技術建立了滑閥啟閉過程的動態(tài)計算模型,節(jié)流口的大小變化通過FLUENT軟件中的UDF函數(shù)來定義,研究了開口量逐步減小過程中流場的分布情況。對兩種不同結構型式的滑閥進行了CFD動網(wǎng)格分析,結果表明帶有環(huán)形槽的滑閥產生了較小的穩(wěn)態(tài)液動力。利用CFD穩(wěn)態(tài)流技術計算得到滑閥閥芯的徑向不平衡力。結果表明,徑向不平衡力遠遠小于靜壓支撐力,閥芯可很好的懸浮于閥套內。 利用ABAQUS軟件的ABAQUS/Standard模塊對噴嘴頭和噴嘴塊的過盈配合進行了仿真分析,比較了不同溫度下接觸力的變化情況。仿真表明,由于溫度的升高和材料的線膨脹效應,接觸應力會發(fā)生變化,但是總體來說接觸應力變化不大,噴嘴頭和噴嘴塊能保持很好的接觸。 對水壓伺服閥的反饋桿-滑閥組件的穩(wěn)定狀態(tài)進行了力學分析,提出了伺服閥穩(wěn)態(tài)分析的有限元計算模型。計算得到了不同反饋桿配置下水壓伺服閥滑閥的位移輸出,可用于指導設計出合適粗細的反饋桿。 提出了雙相對置超磁致伸縮驅動器的等效動力學模型,并由此得到了磁致伸縮水壓伺服閥的物理傳遞模型。利用自動控制系統(tǒng)MATLAB動態(tài)仿真方法對該伺服閥的物理模型進行了仿真。結果表明,該閥的響應時間為0.016s,幅頻寬為60Hz,相頻寬為50Hz,能夠滿足快速響應的要求。
[Abstract]:Giant Magnetostrictive material (GMMM) is a kind of material with large strain, high response speed and high energy transfer density. Based on giant magnetostrictive actuator (GMA), a new type of double relative giant magnetostrictive self-sensing drive hydraulic servo control valve is proposed. By using the methods of computational fluid dynamics (CFD), finite element method (FEM) and dynamic simulation of automatic control system (MATLAB), the design of double relative giant magnetostrictive self-sensing driven hydraulic servo valve is systematically analyzed and studied. Based on the theory of pipe flow and various typical throttle flow in hydrodynamics, the hydraulic bridge of giant magnetostrictive hydraulic servo valve is analyzed theoretically. The simplified model of hydraulic bridge and the relationship between the pressure difference between the two ends of the valve core and the displacement of the baffle are established to verify the correctness of the subsequent simulation results. The pressure distribution of the baffle and the front end of the nozzle is studied by using the CFD steady flow technique. And the pressure difference between the two ends of the valve core with the change of baffle position. The dynamic calculation model of sliding valve opening and closing process is established by using CFD dynamic grid technology. The change of throttle port is defined by UDF function in FLUENT software. The distribution of the flow field in the process of gradual decrease of the opening is studied. The CFD dynamic grid analysis of two kinds of sliding valves with different structures is carried out. The results show that the sliding valve with annular grooves produces small steady fluid power. The radial unbalance force of the valve core is calculated by using CFD steady state flow technique. The results show that the radial unbalance force is much smaller than the static pressure supporting force. The valve core is well suspended in the valve sleeve. The interference fit between nozzle head and nozzle block is simulated and analyzed by using ABAQUS/Standard module of ABAQUS software, and the change of contact force at different temperature is compared. The simulation results show that due to the increase of temperature and the linear expansion effect of material, The contact stress will change, but the contact stress will not change, and the nozzle head and nozzle block can keep in good contact. In this paper, the stable state of feedback rod and slide valve assembly of hydraulic servo valve is analyzed, and the finite element calculation model of steady state analysis of servo valve is put forward. The displacement output of slide valve of hydraulic servo valve with different feedback rod configuration is calculated. Can be used to guide the design of the appropriate thickness of the feedback rod. An equivalent dynamic model of double relative giant magnetostrictive actuator is presented. The physical transfer model of the magnetostrictive hydraulic servo valve is obtained. The physical model of the servo valve is simulated by using the automatic control system MATLAB dynamic simulation method. The response time of the valve is 0.016 s, the amplitude width is 60 Hz, and the phase width is 50 Hz, which can meet the requirement of rapid response.
【學位授予單位】:北京工業(yè)大學
【學位級別】:碩士
【學位授予年份】:2011
【分類號】:TH137.52
【引證文獻】
相關碩士學位論文 前1條
1 王麗梅;埋地長輸管道泄漏事故應急關鍵技術研究[D];北京工業(yè)大學;2012年
,本文編號:1511344
本文鏈接:http://www.sikaile.net/kejilunwen/jixiegongcheng/1511344.html
教材專著