自行式框架車液壓控制系統(tǒng)設計與性能研究
本文關鍵詞: 自行式框架車 閉式液壓驅動系統(tǒng) 懸架液壓系統(tǒng) 負載敏感恒壓控制 伺服超馳控制 液壓延時 出處:《燕山大學》2014年博士論文 論文類型:學位論文
【摘要】:鋼鐵工業(yè)是一個運輸密集型的行業(yè),,物流成本在整個生產成本中占有較大的比重。無軌運輸因其投資小、占地少、機動靈活、運行暢通、效率高等優(yōu)點較鐵路運輸對于減小物流成本具有顯著的效果。發(fā)達國家的廠區(qū)物料運輸多采用無軌運輸,物流成本只占總成本的8%~10%,而我國仍以鐵路運輸為主導,物流成本占總成本的30%,因此無軌運輸已經(jīng)成為我國鋼鐵行業(yè)物料運輸?shù)陌l(fā)展趨勢。 自行式框架車因其可配合料籃完成各種鋼鐵企業(yè)廠內物料轉運作業(yè)、工作效率高、載重量大、操作簡單、性能優(yōu)良等優(yōu)點成為無軌運輸?shù)闹髁姟\囕v優(yōu)良的電液控制系統(tǒng)是自行式框架車在高速、大載荷的工況下長期運行的必要條件。本文以自行式框架車電液控制系統(tǒng)重要的兩大組成部分:閉式液壓驅動系統(tǒng)和懸架液壓系統(tǒng)為研究對象,結合實際應用中暴露的問題,對閉式液壓驅動系統(tǒng)和懸架液壓系統(tǒng)的操控性、安全性和平順性進行了深化研究,主要研究內容如下: (1)針對自行式框架車行駛速度快、機動性好的工作要求,設計車輛新型閉式液壓驅動系統(tǒng),改進設計車輛的差速與差力控制功能;為進一步提高車輛的操控性與安全性設計車輛的啟動液壓延時預警系統(tǒng)和閉式液壓驅動系統(tǒng)的過濾裝置。 (2)為優(yōu)化變量泵的排量控制,解決懸架液壓系統(tǒng)、轉向液壓系統(tǒng)和輔助液壓系統(tǒng)與閉式液壓驅動系統(tǒng)功率需求間的矛盾,采用了一種新型的復合控制方式——伺服超馳控制技術,并分析該控制方式的工作原理動態(tài)特性。 (3)為滿足廠內物流運輸對車身高度可調性以及四點懸架驅動同步性的要求,設計具有保壓和失壓保護功能的懸架電液控制系統(tǒng);為克服自行式框架車懸架液壓系統(tǒng)與轉向液壓系統(tǒng)對油源控制形式需求差異的矛盾,研制一種負載敏感液壓泵的恒壓變量控制裝置。 (4)針對自行式框架車四點懸架同步升降系統(tǒng)存在的耦合性、非線性、模型參數(shù)不確定性的特點,提出一種基于多點輸出耦合的模糊PID多缸同步驅動控制策略,并通過仿真分析與實驗分析驗證其有效性。 (5)針對自行式框架車額定載荷大、行駛速度快、受地面沖擊大的特點,在傳統(tǒng)自行式液壓載重車定剛度液壓彈簧懸架的基礎上,改進設計適應自行式框架車作業(yè)要求的懸架液壓系統(tǒng);提出懸架液壓系統(tǒng)順應性的評價指標,并且在MATLAB/Simulink環(huán)境中模擬分析隨機路面輸入下,自行式框架車在空載與滿載兩種工況下,兩種懸架液壓系統(tǒng)的順應性;最后通過現(xiàn)場對比實驗驗證改進后的懸架液壓系統(tǒng)對于改善車輛行駛平順性的效果。 (6)設計基于USB7360A型數(shù)據(jù)采集卡的硬件采集系統(tǒng)和LabVIEW的數(shù)據(jù)采集處理軟件系統(tǒng),對車輛的閉式液壓驅動系統(tǒng)、懸架液壓系統(tǒng)和轉向液壓系統(tǒng)的關鍵參數(shù)進行測試,來驗證理論設計的合理性。
[Abstract]:Iron and steel industry is a transportation-intensive industry, logistics costs account for a large proportion of the total production costs. Trackless transportation because of its small investment, less land, flexible and smooth operation. The advantages of high efficiency are more effective than railway transportation in reducing the logistics cost. In the developed countries, the material transportation in the factory area adopts trackless transport, and the logistics cost only accounts for 810% of the total cost. But our country still takes the railway transportation as the leading factor, the logistics cost accounts for 30% of the total cost, so the trackless transportation has become the development trend of the material transportation in the iron and steel industry of our country. Self-propelled frame car can be used to complete all kinds of material transfer operations in iron and steel enterprises because of its high efficiency, large load and simple operation. Excellent performance has become the main force of trackless transportation. The excellent electro-hydraulic control system of the vehicle is self-propelled frame car at high speed. This paper focuses on two important components of the electro-hydraulic control system of self-propelled frame vehicle: closed hydraulic drive system and suspension hydraulic system. Combined with the problems exposed in practical application, the maneuverability, safety and ride comfort of the closed hydraulic drive system and suspension hydraulic system are further studied. The main research contents are as follows: 1) aiming at the requirement of high speed and good maneuverability of self-propelled frame vehicle, a new type of closed hydraulic drive system is designed to improve the differential speed and differential force control function of the designed vehicle. In order to further improve the maneuverability and safety of the vehicle, the filter device of the starting hydraulic delay warning system and the closed hydraulic drive system of the vehicle is designed. In order to optimize the displacement control of variable pump, solve the contradiction between hydraulic system of suspension, steering hydraulic system and auxiliary hydraulic system and closed hydraulic drive system. In this paper, a new compound control method, servo overpass control technology, is adopted, and the dynamic characteristics of the control principle are analyzed. In order to meet the requirements of high adjustable vehicle body and four point suspension drive synchronism, a suspension electro-hydraulic control system with the function of keeping pressure and losing voltage is designed. In order to overcome the contradiction between hydraulic system of self-propelled frame car suspension and steering hydraulic system, a constant pressure variable control device of load sensitive hydraulic pump is developed. (4) aiming at the characteristics of coupling, nonlinearity and uncertainty of model parameters, the synchronous lifting system of self-propelled frame car four-point suspension is characterized by coupling, nonlinearity and uncertainty of model parameters. A fuzzy PID multi-cylinder synchronous drive control strategy based on multi-point output coupling is proposed, and its effectiveness is verified by simulation and experimental analysis. In view of the characteristics of the self-propelled frame vehicle, such as large rated load, fast driving speed and large impact from the ground, it is based on the traditional self-propelled hydraulic truck with fixed stiffness hydraulic spring suspension. To improve the design of suspension hydraulic system to meet the operational requirements of self-propelled frame car; The evaluation index of the compliance of suspension hydraulic system is put forward, and the self-propelled frame car is simulated and analyzed in the MATLAB/Simulink environment under two conditions of no-load and full-load. Compliance of two kinds of suspension hydraulic system; Finally, the effect of the improved suspension hydraulic system on improving the ride comfort of the vehicle is verified by field contrast experiments. The hardware acquisition system based on USB7360A data acquisition card and the data acquisition and processing software system of LabVIEW are designed. The closed hydraulic driving system of the vehicle is designed. The key parameters of suspension hydraulic system and steering hydraulic system are tested to verify the rationality of theoretical design.
【學位授予單位】:燕山大學
【學位級別】:博士
【學位授予年份】:2014
【分類號】:TF086;TH137
【參考文獻】
相關期刊論文 前10條
1 王艷;程俊峰;黃偉中;張嘵晶;黎明柱;;壓力傳感器在升降式運輸車稱重系統(tǒng)中的應用[J];傳感器與微系統(tǒng);2006年06期
2 孟武勝;朱劍波;黃鴻;趙晨光;;基于LabVIEW數(shù)據(jù)采集系統(tǒng)的設計[J];電子測量技術;2008年11期
3 陳梅;王健;;基于OpenGL的惠斯通電橋的模擬實現(xiàn)[J];電子技術;2011年01期
4 張殿平;超馳控制與自動調節(jié)運行安全[J];廣東電力;2002年04期
5 劉從臻;郭維俊;王芬娥;何成秀;;八自由度車輛模型傳遞函數(shù)研究[J];甘肅農業(yè)大學學報;2006年03期
6 尹志新;李端芳;唐萌;賀琳丹;;基于MATLAB的時域路面不平度仿真研究[J];裝備制造技術;2010年04期
7 王書鎮(zhèn);汪明德;;雙氣室油氣懸掛原理及特性計算[J];兵工學報(坦克裝甲車與發(fā)動機分冊);1984年01期
8 馮金芝;李君;鄭松林;朱文博;喻凡;;車輛四輪隨機輸入模型研究[J];上海理工大學學報;2010年03期
9 董春芳;孟慶鑫;;多缸電液調平系統(tǒng)相鄰交叉耦合同步控制[J];哈爾濱工程大學學報;2012年03期
10 吳百海,鄒大鵬,司振軍,廖敬青;多油缸同步運行智能控制的探討[J];機床與液壓;2003年04期
相關博士學位論文 前1條
1 杜恒;大型輪式車輛油氣懸架及電液伺服轉向系統(tǒng)研究[D];浙江大學;2011年
本文編號:1451302
本文鏈接:http://www.sikaile.net/kejilunwen/jixiegongcheng/1451302.html