基于ANSYSWorkbench的變截面細長軸電解磨削分析與研究
[Abstract]:In the process of practical machining, variable cross-section slender shaft is easy to produce radial deformation due to its own stiffness, but the machining accuracy of shaft is often very high, because the traditional electrolytic machining method is difficult to achieve its precision requirements. Therefore, the conventional electrolytic grinding method can not be used to process it. For the problem of easy deformation of slender axis with variable cross section, there has been a new process method of electrolysis grinding, which is the following middle pole method. On the basis of this, a new process method, "variable load following middle pole method", has been designed for electrolytic grinding. And the machining analysis of typical parts with long axis with variable cross-section is carried out. In this paper, the theory, mechanical model, simulation and experimental verification will be analyzed and studied. Firstly, the development and application of ECM at home and abroad are briefly summarized, the basic principle and characteristics of ECM are expounded, and the factors affecting machining accuracy are analyzed systematically. In view of the above two machining technology methods are described theoretically, and then the mechanical model of electrolytic grinding is established and the mechanical analysis is carried out for the main research object of this paper. Secondly, with the help of ANSYSWorkbench simulation software, the deformation law and stress change of the parts are analyzed by using two processing methods of common middle pole following and variable load following middle pole, and the results of the two kinds of simulation are compared. The results show that the minimum radial displacement and the maximum stress are reduced from the maximum 27.9um to 9.8 ump and the maximum stress from 25.4MPa to 22.4 MPA, respectively, compared with the electrolysis grinding with the following middle pole method, and the minimum radial displacement of the parts machined by the variable load follower electrode method is reduced from the maximum 27.9um to 9.8 ump. The machining accuracy is greatly improved. Then the force applied by variable load is analyzed and selected by using instantaneous dynamic model. When the radial force difference between variable load and grinding force of parts is 4 N, the machining accuracy of electrolysis grinding with variable load is the highest when the radial force difference between variable load and grinding force is 4 N. Finally, considering that the main mechanical factors that affect the radial deformation of parts in variable load follower electrolysis grinding are parts rotational speed Vw, longitudinal feed speed Vf and grinding depth ap,. In this paper, the parameters of these factors are optimized and analyzed by orthogonal experiment. Finally, the rotational speed of parts is 240r / min and the longitudinal feed speed is 0.140 mm/r,. The variable load machining process with grinding depth of 0.025 mm can achieve high machining accuracy. The results are verified by experiments, and the scheme is feasible.
【學位授予單位】:西華大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:TG580;TG662
【相似文獻】
中國期刊全文數(shù)據(jù)庫 前10條
1 黃偉馨,秦煥興;外圓電解磨削[J];機械加工;1966年07期
2 喬木,張明德;電解磨削加工修復零件調(diào)查[J];糧油加工與食品機械;1974年S3期
3 段明揚,,楊鈴;電解磨削鏡面新工藝的研究[J];廣西機械;1994年01期
4 尹洋;螺旋電極電解磨削加工的研究[J];四川工業(yè)學院學報;2001年04期
5 干為民;徐家文;;展成電解磨削加工的機理研究[J];機械科學與技術;2006年06期
6 周利平;;螺旋電極電解磨削效率的模糊綜合評判[J];西南民族大學學報(自然科學版);2007年05期
7 劉向蕾;朱荻;曾永彬;劉勇;黃紹服;;電解磨削復合加工精密擴孔研究[J];電加工與模具;2009年02期
8 水原康;趙恩光;;硬質(zhì)合金刀具的電解磨削[J];工具技術;1965年08期
9 ;電解磨削加工技術[J];電子管技術;1967年01期
10 ;電解磨削機床[J];電加工;1973年03期
中國重要會議論文全文數(shù)據(jù)庫 前8條
1 干為民;徐家文;;數(shù)控展成電解磨削加工的機理研究[A];2005年中國機械工程學會年會第11屆全國特種加工學術會議專輯[C];2005年
2 干為民;徐家文;;數(shù)控展成電解磨削加工的機理研究[A];2005年中國機械工程學會年會論文集第11屆全國特種加工學術會議專輯[C];2005年
3 干為民;徐家文;;數(shù)控展成電解磨削加工的機理研究[A];2005年中國機械工程學會年會論文集[C];2005年
4 徐波;干為民;;數(shù)控電解磨削加工硬質(zhì)合金的試驗研究[A];第13屆全國特種加工學術會議論文集[C];2009年
5 干為民;褚輝生;徐宏力;;五軸聯(lián)動數(shù)控電解磨削整體葉輪的算法[A];全國先進制造技術高層論壇暨第七屆制造業(yè)自動化與信息化技術研討會論文集[C];2008年
6 干為民;劉延祿;徐家文;;整體葉輪葉片型面數(shù)控展成電解磨削機床及運動分析[A];2001年中國機械工程學會年會暨第九屆全國特種加工學術年會論文集[C];2001年
7 鄭開陸;;瓦楞輥再生新工藝的研究[A];第十一屆全國包裝工程學術會議論文集(一)[C];2007年
8 沈崢嶸;徐正揚;朱荻;;鎳基高溫合金K424電解磨削復合打孔技術研究[A];第14屆全國特種加工學術會議論文集[C];2011年
中國碩士學位論文全文數(shù)據(jù)庫 前9條
1 尹其林;數(shù)控電解磨削加工的基礎研究[D];南京農(nóng)業(yè)大學;2009年
2 單曉慧;鈦合金電解磨削加工工藝研究[D];大連理工大學;2015年
3 李發(fā)智;基于ANSYSWorkbench的變截面細長軸電解磨削分析與研究[D];西華大學;2015年
4 辜斌;低剛度、變截面軸電解磨削加工仿真技術[D];西華大學;2008年
5 張欣耀;精密微小孔電解磨削復合擴孔加工技術研究[D];南京航空航天大學;2009年
6 孫元普;電解磨削加工鈦合金基礎試驗研究[D];大連理工大學;2014年
7 肖雄;摩擦副表面電解磨削集成控制技術及其相關工藝研究[D];南京航空航天大學;2014年
8 劉祥偉;聚合釜電解磨削復合加工工藝參數(shù)選擇[D];哈爾濱工程大學;2006年
9 沈崢嶸;鎳基鑄造高溫合金K424電解磨削復合加工試驗研究[D];南京航空航天大學;2012年
本文編號:2373357
本文鏈接:http://www.sikaile.net/kejilunwen/jinshugongy/2373357.html