天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 金屬論文 >

內環(huán)筋薄壁殼體內旋壓工藝有限元模擬與試驗研究

發(fā)布時間:2018-07-23 18:45
【摘要】:帶內環(huán)筋、薄壁是曲母線筒形件廣為采用的結構形式,是在保證零件剛度、強度不降低的情況下減輕重量的首選結構形式。本課題以鋁合金殼體為研究對象,研究帶內環(huán)向加強筋薄壁殼體零件的內旋壓成形,通過有限元數值模擬和試驗研究,分別對小端起旋和大端起旋兩種內旋壓成形工藝及制品的組織與性能進行了研究。采用ABAQUS軟件對異形薄壁殼體小端起旋和大端起旋兩種內旋壓成形工藝進行了有限元模擬,對其旋壓力和變形情況進行了計算分析。采用小端起旋的預成形-終成形旋壓工藝,可獲得變形均勻的圓筒形薄壁件。這種旋壓工藝的徑向旋壓力最大,軸向旋壓力次之,切向旋壓力最小。與徑向旋壓力相比,切向旋壓力基本可以忽略不計。在殼體大端的后端框和中間段蒙皮部分的旋壓成形過程中,其旋壓力存在平臺區(qū),成形過程平穩(wěn);在殼體小端前端框部分的旋壓成形過程中,旋輪的軸向行程越大,減薄率越大,旋壓力越大,殼體旋壓成形的最大旋壓力出現在這一過程中。若將大端固定,可以實現擴徑旋壓,但在殼體的蒙皮與前端框的過渡區(qū)域出現變形不穩(wěn)定區(qū)。通過對某內環(huán)筋薄壁殼體小端起旋和大端起旋兩種旋壓工藝試驗,分別研究了大端和小端起旋兩種內旋壓工藝的成形規(guī)律。采用大端和小端起旋工藝成形曲母線薄壁殼體時,存在如下兩種工藝:一是在實現擴徑的同時,壁厚基本保持不變;二是在擴徑的同時,壁厚進行減薄。對于大端起旋,當模具半錐角小于毛坯半錐角時,其壁厚減薄規(guī)律應符合正弦律,而小端起旋的壁厚減薄規(guī)律不受正弦律約束。根據正交試驗結果確定的內旋壓成形工藝參數分別為:進給比0.6mm/r,減薄率25%,旋輪圓角半徑6mm,旋輪安裝角25°。通過旋壓試驗確定的帶內環(huán)筋薄壁殼體小端起旋工藝流程為:毛坯下料→毛坯加工→退火處理→預成形→淬火→終成形→零件加工。與之對應的旋壓工藝參數分別是:預成形的最大壁厚減薄率25%,終成形的最大減薄率為10%;旋輪圓角半徑6mm,旋輪進給比0.6mm/r,主軸轉速50r/min。試驗件的壁厚差為±0.05mm,圓度為0.15mm。對某制品薄壁殼體旋壓試驗件蒙皮段的微觀組織和力學性能進行了測試。測試結果表明,退火-旋壓工藝成形的制品晶粒比較細小,尺寸在1μm~5μm之間,但強度不滿足設計要求;而預成形-終成形結合中間淬火工藝成形制品的晶粒較大,尺寸在15μm~20μm之間,總變形量越大,晶粒尺寸越細小,其抗拉強度滿足360MPa的設計要求;內旋壓所有試驗件在切向上均有纖維組織產生,總變形量越大,切向纖維組織越明顯;退火—旋壓工藝成形的制品殘余應力值較小,預成形-終成形結合中間淬火工藝旋壓制品殘余應力值相對較大,旋壓制品的殘余應力均為壓應力。對內環(huán)筋薄壁殼體內旋壓成形工藝的有限元數值模擬和試驗研究,不僅為確定某鋁合金薄壁殼體旋壓成形工藝、實現批量生產提供了依據,而且也為更好地解決帶內環(huán)向加強筋薄壁類殼體零件的旋壓成形問題提供了參考。
[Abstract]:With inner ring bar and thin wall is a structural form widely used for curved busbar shaped parts. It is the first choice to reduce the weight of the parts under the condition of ensuring the rigidity of the parts and the strength is not reduced. This subject takes the aluminum alloy shell as the research object, and studies the internal spinning forming of the thin-walled shell parts with inner ring stiffeners, through the finite element numerical simulation and test. In this study, the microstructure and properties of two internal spinning processes and products were studied, respectively. The ABAQUS software was used to simulate the two internal spinning processes of the small end spin and the large end spin forming, and the rotating pressure and deformation were calculated and analyzed. The rotary pre forming and final forming spinning process can obtain uniform cylindrical thin-walled parts. The radial pressure of the spinning process is the largest, the axial rotation pressure is the second, the tangential spin pressure is the smallest. Compared with the radial rotation pressure, the tangential spin pressure can be ignored. The spinning of the rear end frame and the middle section of the middle section of the large end of the shell is formed. In the process, the rotating pressure has the platform area and the forming process is stable. In the spinning process of the front frame part of the small end of the shell, the larger the axial stroke of the rotary wheel, the greater the thinning rate, the greater the rotation pressure, the maximum rotation pressure of the shell spinning forming in this process. If the large end is fixed, the enlargement spinning can be realized, but the skin of the shell is covered by the skin. The deformation instability zone appears in the transition region of the front end frame. Through the two spinning process tests on the small end spin and the large end spinning of a thin wall shell of a inner ring, the forming rules of the two internal spinning processes of the large end and the small end spin are respectively studied. There are two processes as follows: when the large end and the small end spin process is used to form a thin-walled shell of the curved busbar, the following two kinds of processes are present: One is that the wall thickness is basically the same while the enlargement is realized; two is the thickness reduction of the wall thickness at the same time when the diameter is expanded. When the large end is whirling, the thinning law of the wall thickness should conform to the sine law when the half cone angle is less than the semi cone angle of the blank, and the thinning law of the wall thickness of the small end whirling is not restricted by the sine law. The internal rotation determined according to the orthogonal test results. The process parameters of pressing forming are as follows: feed ratio 0.6mm/r, thinning rate 25%, rotary wheel corner radius 6mm, rotary wheel installation angle 25 degrees. The small end spinning process of inner ring stiffened thin-walled shell with inner ring reinforced by spinning test is: blank blanking, blank processing, annealing treatment, pre forming, quenching, final forming and parts processing. The art parameters are the maximum thinning rate of pre forming wall thickness 25%, the maximum thinning rate of final forming 10%, rotary wheel corner radius 6mm, rotary wheel feed ratio 0.6mm/r, the wall thickness difference of 50r/min. test parts of spindle speed is + 0.05mm, and the roundness is 0.15mm. to test the microstructure and mechanical properties of a thin-walled shell spinning test piece. The test results show that the grain of the products formed by the annealing spinning process is relatively small, the size is between 1 m~5 and m, but the strength is not satisfied with the design requirements, while the grain size of the pre forming end forming combined with the intermediate quenching process is larger and the size is between 15 Mu m~20 mu m, the greater the total deformation, the smaller the grain size and the tensile strength to meet 360MPa. All the testing parts of the internal spinning are produced in the tangential direction, the greater the total deformation is, the greater the amount of the total deformation, the more obvious the tangential fibers are. The residual stress of the products formed by the annealing spinning process is smaller, the residual stress value of the pre forming end forming combined with the intermediate quenching process is relatively large, and the residual stresses of the spinning products are all The finite element numerical simulation and experimental study on the spinning process in the inner ring stiffener shell not only provide the basis for determining the spinning process of a thin-walled shell of an aluminum alloy and realizing the mass production, but also provide a reference for the better solution of the spinning forming of the thin-walled shell parts with inner ring stiffeners.
【學位授予單位】:燕山大學
【學位級別】:博士
【學位授予年份】:2015
【分類號】:TG306;TG146.21

【相似文獻】

相關期刊論文 前10條

1 任長潔;楊延濤;張立武;;突變壁厚筒形件精密旋壓工藝研究[J];熱加工工藝;2011年23期

2 ;鈦錐體管旋壓工藝小結[J];稀有金屬合金加工;1976年05期

3 ;旋壓機和旋壓工藝[J];電子管技術;1977年01期

4 高東民;;“普旋”旋壓工藝——薄壁不銹鋼1Cr18Ni9Ti滾筒旋壓工藝[J];航空精密機械工程;1988年02期

5 高東民;”普旋”旋壓工藝——薄壁不銹鋼1Cr18Ni9Ti滾筒旋壓工藝[J];航空工藝技術;1989年05期

6 梁淑賢,吳鳳照,張淳芳;高精度薄壁鉬管旋壓工藝[J];稀有金屬材料與工程;1995年04期

7 靳惠珍,鄧品瑞;空心旋轉體零件的旋壓工藝[J];機械工藝師;1995年09期

8 肖作義;對輪旋壓工藝[J];新技術新工藝;2000年06期

9 高東民;1Cr18Ni9Ti封頭旋壓工藝[J];機械工人;2000年07期

10 高東民;薄壁不銹鋼1Cr18Ni9Ti滾筒旋壓工藝[J];機械工人(熱加工);2003年05期

相關會議論文 前10條

1 孫存福;孫大煒;;關于復合旋壓工藝的討論[A];第八屆全國塑性加工學術年會論文集[C];2002年

2 周南強;龍波;柏艷輝;;曲面體旋壓工藝[A];中國工程物理研究院科技年報(1998)[C];1998年

3 馬世成;唐志紅;;模環(huán)旋壓工藝技術[A];提高全民科學素質、建設創(chuàng)新型國家——2006中國科協年會論文集(下冊)[C];2006年

4 安章榮;楊俊;馬世成;王東坡;;大直徑特長簡體模環(huán)旋壓工藝[A];第十一屆全國旋壓技術交流大會論文集[C];2008年

5 宋麗娟;;曲母線形件旋壓工藝研究[A];第十一屆全國旋壓技術交流大會論文集[C];2008年

6 李繼貞;王健飛;陳福龍;侯紅亮;;鋁合金整體復合氣瓶內膽旋壓工藝研究[A];第八屆全國塑性加工學術年會論文集[C];2002年

7 溫軍國;鄭棄非;趙云豪;李德富;;導磁大徑厚比不銹鋼管旋壓工藝研究[A];中國有色金屬學會合金加工學術委員會2008學術年會論文集[C];2008年

8 李廣新;黃皆捷;何丹農;夏萼輝;;筒形件旋壓工藝CAD的數據庫系統[A];塑性加工技術文集[C];1992年

9 李萍;薛克敏;呂炎;;鈦合金筒形件錯距旋壓工藝與組織的研究[A];2004“安徽制造業(yè)發(fā)展”博士科技論壇論文集[C];2004年

10 陳福龍;李繼貞;王健飛;;TC4大直徑薄壁殼體旋壓工藝研究[A];第十一屆全國旋壓技術交流大會論文集[C];2008年

相關博士學位論文 前1條

1 王振杰;內環(huán)筋薄壁殼體內旋壓工藝有限元模擬與試驗研究[D];燕山大學;2015年

相關碩士學位論文 前3條

1 吳桂永;旋壓工藝三維數字化設計與管理系統的研究[D];大連理工大學;2010年

2 王丹;神經網絡算法在旋壓工藝中的應用研究[D];遼寧工程技術大學;2009年

3 吳志偉;大型超長超薄管件旋壓工藝參數及設備研究[D];燕山大學;2013年

,

本文編號:2140317

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/jinshugongy/2140317.html


Copyright(c)文論論文網All Rights Reserved | 網站地圖 |

版權申明:資料由用戶83dcf***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com