薄壁件銑削加工振動分析以及變形預測
本文選題:薄壁件 + 加工變形; 參考:《西南交通大學》2016年碩士論文
【摘要】:隨著制造業(yè)的發(fā)展,傳統(tǒng)的加工方式已難于滿足工業(yè)的需求。高速切削(High Speed Cutting, HSC)加工技術應運而生,高速加工技術采用超硬材料刀具和磨具,利用高精度、高自動化和高柔性的制造設備,以實現(xiàn)提高切削速度來達到提高加工效率和加工質量,降低加工成本的目標。在航空、航天中高速切削加工技術已得到廣泛的應用。但是航空、航天產品中多采用質量較輕的鋁合金薄壁零件,在高速加工中極易出現(xiàn)振動現(xiàn)象,導致工件加工變形增大,難以滿足加工要求。因此需要在加工前基于加工參數(shù)對工件的加工變形情況進行預測,優(yōu)化加工參數(shù),以提高加工質量和成品率。然而,實現(xiàn)鋁合金薄壁零件的加工變形預測,存在以下幾個難點:(1)基于切削參數(shù)的動態(tài)銑削力模型的構建,(2)動態(tài)切削力作用下的加工系統(tǒng)動力學模型的構建及系統(tǒng)動力學行為預測,(3)動態(tài)切削力作用下的薄壁件加工變形預測模型的構建。為解決這些問題,本文以懸臂板結構的典型薄壁件為研究對象,對薄壁件高速加工工藝系統(tǒng)進行了模態(tài)分析、銑削力建模、加工系統(tǒng)動力學建模及振動特性分析、加工變形預測建模等方面的研究。其主要內容包括以下幾個方面:(1)通過分析薄壁件銑削加工工藝系統(tǒng)的特點,機床的剛度相對于工件和刀具較高,因此將加工工藝系統(tǒng)簡化為工件子系統(tǒng)和刀具子系統(tǒng)。分別對工件子系統(tǒng)和刀具子系統(tǒng)進行模態(tài)分析,獲取加工工藝系統(tǒng)振型最突出的平面,以及在該平面內的模態(tài)質量、模態(tài)阻尼和模態(tài)剛度等模態(tài)參數(shù),為后續(xù)薄壁件加工系統(tǒng)動力學模型的構建提供基礎。(2)提出了一種動態(tài)切削力建模方法,首先通過分析銑削機理,將切削刃的切削過程細分為切入、穩(wěn)定和切出三個時間段,分別建立不同時間段切削刃的微元切削力模型,再通過分析某一瞬時參與銑削的單齒切削刃長度,將該長度上的所有微元切削力進行積分,并計算該時刻參與切削的銑刀的齒數(shù),將所有刀齒上的切削力求和,從而建立整個刀具的動態(tài)切削力模型,然后通過銑削力、刀具和工件的振動位移關系,建立基于動態(tài)位移的銑削力模型,最后通過試驗驗證了該方法的正確性。(3)基于系統(tǒng)模態(tài)分析和動態(tài)切削力模型,通過分析銑削力與加工工藝系統(tǒng)振動的關系,構建了薄壁件側壁加工工藝系統(tǒng)的動力學模型,用于分析加工系統(tǒng)的動力學特性,并基于該模型提出了一種薄壁件銑削加工顫振穩(wěn)定性的預測方法,該方法采用銑削穩(wěn)定性葉瓣圖來判斷不同切削參數(shù)條件下加工的穩(wěn)定性,最后通過試驗驗證了模型和方法的正確性。(4)基于動態(tài)銑削力模型和顫振穩(wěn)定性預測方法,構建了薄壁件加工變形預測有限元模型,實現(xiàn)了薄壁件加工前的變形預測,從而為薄壁件銑削加工工藝參數(shù)的優(yōu)選提供支持,最后通過試驗驗證了該模型的正確性,并利用試驗分析了薄壁件在加工過程中出現(xiàn)振動對加工變形的影響。通過上述四個方面對薄壁件加工過程進行的研究,建立一套完整的針對薄壁件加工變形預測的系統(tǒng)性方法,為提高薄壁件加工的生產率和產品的合格率,以及加工工藝參數(shù)的優(yōu)化選擇提供了具有指導意義的方法和結論。
[Abstract]:With the development of the manufacturing industry, the traditional processing methods have been difficult to meet the needs of the industry. High Speed Cutting (HSC) processing technology came into being. The high speed machining technology adopts super hard material tools and grinding tools, high precision, high automation and high flexible manufacturing equipment to improve the cutting speed to improve the processing efficiency. The target of rate and processing quality and reducing the cost of processing. In aerospace, high speed machining technology has been widely used in aerospace. However, aviation and aerospace products are mostly lightweight aluminum alloy thin-walled parts. The vibration phenomenon is easy to appear in high speed machining, which causes the deformation of workpiece to be increased, so it is difficult to meet the processing requirements. Therefore, it is difficult to meet the requirements of processing. It is necessary to predict the machining deformation of the workpiece on the basis of processing parameters and optimize the processing parameters to improve the processing quality and yield. However, there are several difficulties in the prediction of machining deformation of aluminum alloy thin-walled parts. (1) construction of dynamic milling force model based on cutting parameters, (2) dynamic cutting force The construction of the dynamic model of the machining system and the prediction of the dynamic behavior of the system. (3) the construction of the deformation prediction model of the thin-walled parts under the action of dynamic cutting force. In order to solve these problems, this paper takes the typical thin-walled parts of the cantilever plate structure as the research object, and carries out the modal analysis, the milling force modeling and the addition of the thin wall parts. The main contents of the system dynamics modeling, vibration characteristics analysis and processing deformation prediction modeling are as follows: (1) by analyzing the characteristics of the milling process system of thin-walled parts, the rigidity of the machine tool is higher than the workpiece and tool, so the machining process system is simplified to the workpiece system and the tool son. The modal analysis of the workpiece subsystem and the tool subsystem is carried out to obtain the most prominent plane of the vibration mode of the processing system, and the modal parameters such as modal mass, modal damping and modal stiffness in the plane, which provide the basis for the construction of the dynamic model of the subsequent thin-walled parts processing system. (2) a dynamic cutting force is proposed. By analyzing the mechanism of milling, the cutting process of the cutting edge is divided into three stages, and the cutting force model of the cutting edge in different time periods is established, and then the cutting force of the single tooth is integrated by analyzing the length of the single tooth cutting edge. By calculating the number of the teeth of the cutter at this time, the dynamic cutting force model of the whole tool is established by cutting all the cutter teeth. Then the milling force model based on the dynamic displacement is established through the relation of the milling force, the vibration displacement of the tool and the workpiece. Finally, the correctness of the method is verified through the experiment. (3) the system is based on the system. Modal analysis and dynamic cutting force model are used to analyze the relationship between the milling force and the vibration of the processing system. A dynamic model of the thin-walled part side wall processing system is constructed, which is used to analyze the dynamic characteristics of the machining system. Based on this model, a prediction method for the chatter stability of the thin-walled part milling is proposed. The method is adopted. The stability of the machining with different milling parameters is judged by milling stability. Finally, the correctness of the model and method is verified by experiments. (4) based on the dynamic milling force model and the prediction method of flutter stability, a finite element model for the deformation prediction of thin-walled parts is constructed, and the deformation prediction before the thin-walled parts processing is realized. In the end, the accuracy of the model is verified by the test, and the effect of the vibration on the machining deformation is analyzed by the experiment. A complete set of thin-walled parts processing is established through the study of the four aspects of the machining process of thin-walled parts. The systematic method of deformation prediction provides a guiding method and conclusion for improving the productivity of the thin-walled parts and the qualified rate of the products, and the optimization of the processing parameters.
【學位授予單位】:西南交通大學
【學位級別】:碩士
【學位授予年份】:2016
【分類號】:TG54
【相似文獻】
相關期刊論文 前10條
1 李文;一種高精度環(huán)形薄壁件工藝方法的探討[J];機械工人.冷加工;2004年04期
2 袁春曉,馮曉露;一種校直磨削加工中薄壁件變形的方法[J];機械制造;2004年12期
3 張同保;蘇曉佳;劉玉卿;侯濤;;防止薄壁件深沖棱子的工藝措施[J];金屬熱處理;2007年09期
4 陳蔚芳;樓佩煌;陳華;;薄壁件加工變形主動補償方法[J];航空學報;2009年03期
5 汪濤;賈愛青;;大型高精度薄壁件的以車代磨試驗[J];金屬加工(冷加工);2009年04期
6 石明良;;巧卸薄壁件[J];機械工人技術資料;1975年12期
7 高志祥;談談薄壁件的定義域[J];航空標準化;1982年04期
8 吳鳴玉;;薄壁件縱焊縫焊接機[J];機械設計與制造;1990年02期
9 尹三元,張喜春;大直徑薄壁件的磨削[J];機械工人.冷加工;1991年11期
10 趙根生,熊華紹;小型薄壁件擠塑模的設計[J];模具工業(yè);1993年11期
相關會議論文 前10條
1 萬秀屏;譚薇;范鑫;馮欣明;文寶林;;某大型薄壁件車加工變形質量控制[A];第九屆沈陽科學學術年會論文集(信息科學與工程技術分冊)[C];2012年
2 李燕;董愛娟;;加工薄壁件安裝面工藝探討[A];2009全國機電企業(yè)工藝年會<廈工杯>工藝征文論文集[C];2009年
3 廖勇軍;;薄壁件網格技術及計算經濟性研究[A];2013中國汽車工程學會年會論文集[C];2013年
4 韓曉光;張鳳英;翟婷婷;;空間曲面薄壁件柔性裝配定位系統(tǒng)設計與實現(xiàn)[A];第十五屆中國科協(xié)年會第13分會場:航空發(fā)動機設計、制造與應用技術研討會論文集[C];2013年
5 彭昌永;高福全;范如源;;鋁合金薄壁件的點焊及表面處理[A];中國工程物理研究院科技年報(2003)[C];2003年
6 欒宇;解潤鋒;;大型薄壁件-轉輪室精加工分析[A];第七屆(2009)中國鋼鐵年會論文集(下)[C];2009年
7 劉宇;傅戈雁;石世宏;王晨;;光內送粉激光熔覆堆積扭曲薄壁件工藝參數(shù)的控制[A];第15屆全國特種加工學術會議論文集(下)[C];2013年
8 曹栩;駱合力;李尚平;張喜娥;馮滌;;Ni_3Al基合金薄壁件熔模精鑄工藝研究[A];動力與能源用高溫結構材料——第十一屆中國高溫合金年會論文集[C];2007年
9 梁朝堅;;鋁合金薄壁件鑄件變形研究分析[A];2009重慶市鑄造年會論文集[C];2009年
10 丁春艷;楊振國;;聚碳酸酯薄壁件分層失效機制的研究[A];2007年中國機械工程學會年會論文集[C];2007年
相關博士學位論文 前7條
1 陳W,
本文編號:2094649
本文鏈接:http://www.sikaile.net/kejilunwen/jinshugongy/2094649.html