單晶硅電池板焊帶釬焊工藝及可靠性研究
本文選題:單晶硅電池 + 焊帶; 參考:《哈爾濱工業(yè)大學(xué)》2015年碩士論文
【摘要】:太陽(yáng)能被認(rèn)為是21世紀(jì)最重要的新能源,對(duì)解決人類(lèi)能源危機(jī)和環(huán)境問(wèn)題具有重要的意義。太陽(yáng)能發(fā)電技術(shù)的核心是太陽(yáng)能電池組件,而硅電池板和焊帶的釬焊連接作為太陽(yáng)能電池組件制作過(guò)程中最重要的工序,直接影響著電池組件的光電轉(zhuǎn)化效率和使用壽命。目前,準(zhǔn)備將民用的單晶硅電池板用于空間衛(wèi)星,但其焊點(diǎn)在空間大溫差的工作條件下可靠性不足,無(wú)法滿(mǎn)足空間衛(wèi)星的使用要求。本課題的目標(biāo)是研究滿(mǎn)足空間衛(wèi)星使用要求的新的釬焊工藝,使焊點(diǎn)滿(mǎn)足熱循環(huán)性能要求和剝離力要求,并對(duì)互連焊點(diǎn)進(jìn)行可靠性研究。本課題對(duì)比研究了手工點(diǎn)焊和熱壓釬焊兩種釬焊工藝方案,甄選出熱循環(huán)性能較好的熱壓釬焊方案,應(yīng)用正交試驗(yàn)方法對(duì)熱壓釬焊方案進(jìn)行了參數(shù)優(yōu)化,通過(guò)正交試驗(yàn)直觀(guān)分析和方差分析,確定最優(yōu)參數(shù)組,并明確參數(shù)對(duì)試驗(yàn)結(jié)果的影響程度。最優(yōu)參數(shù)組所焊接的焊點(diǎn)熱循環(huán)測(cè)試和剝離力測(cè)試表明,其性能滿(mǎn)足了航天測(cè)試標(biāo)準(zhǔn)。對(duì)Sn-37Pb、Sn-3.5Ag和Sn-3.0Ag-0.5Cu釬料與銀漿界面進(jìn)行了界面反應(yīng)研究和失效分析,熱壓釬焊焊后三種釬料與銀漿的界面均出現(xiàn)了Ag_3Sn薄層。本課題對(duì)熱循環(huán)實(shí)驗(yàn)后界面化合物Ag_3Sn的厚度和釬料微觀(guān)組織進(jìn)行了表征,隨著熱循環(huán)試驗(yàn)的不斷進(jìn)行,界面的變化主要包括兩部分,一是界面化合物Ag_3Sn不斷變厚,且Sn-37Pb/Ag界面處Ag_3Sn生長(zhǎng)最快;二是釬料中金屬間化合物或固溶體相逐漸粗化。對(duì)熱壓釬焊工藝所焊接的Sn-37Pb/Ag、Sn-3.0Ag-0.5Cu/Ag和Sn-3.5Ag/Ag三種接頭Ag_3Sn的時(shí)效生長(zhǎng)和動(dòng)力學(xué)進(jìn)行了研究,確定Ag_3Sn為拋物線(xiàn)型生長(zhǎng)。計(jì)算了不同溫度下Ag_3Sn的生長(zhǎng)速率常數(shù),得到Sn-37Pb/Ag、Sn-3.5Ag/Ag和Sn-3.0Ag-0.5Cu/Ag界面化合物生長(zhǎng)激活能,分別為113.3 kJ/mol、129.9 kJ/mol、123.1 kJ/mol。
[Abstract]:Solar energy is regarded as the most important new energy in the 21st century. The core of the solar power generation technology is the solar cell module. As the most important process in the process of making the solar cell module, the soldering connection between the silicon battery panel and the soldering tape directly affects the photoelectric conversion efficiency and service life of the battery module. At present, the single crystal silicon battery panel for civil use is ready to be used in space satellite, but the solder joint is not reliable enough to meet the requirements of space satellite under the condition of large temperature difference in space. The aim of this paper is to study the new brazing technology to meet the requirements of space satellite, to make the solder joints meet the requirements of thermal cycling performance and peeling force, and to study the reliability of interconnect solder joints. In this paper, two kinds of brazing schemes, manual spot welding and hot press brazing, are compared and studied. The hot pressing brazing schemes with better thermal cycling performance are selected. The parameters of the hot pressing brazing schemes are optimized by orthogonal test method. The optimal parameter group was determined by means of visual analysis and variance analysis of orthogonal test, and the degree of influence of parameters on the test results was determined. The thermal cycle test and peeling force test of solder joint welded by the optimal parameter group show that its performance meets the aerospace test standard. The interfacial reaction and failure analysis of Sn-37PbSn-3.5Ag and Sn-3.0Ag-0.5Cu solder with silver paste were carried out. After hot pressing brazing, Ag_3Sn thin layers were found at the interface between the three solders and the paste. The thickness of interfacial compound Ag_3Sn and the microstructure of solder were characterized in this paper. With the development of thermal cycling experiment, the change of interface mainly includes two parts, one is that the interfacial compound Ag_3Sn is thicker and thicker. At the interface of Sn-37Pb/Ag, Ag_3Sn grows fastest, and the intermetallic compound or solid solution phase in solder gradually coarsenes. The aging growth and kinetics of Sn-37Pb / AgSn-3.0 Ag-0.5Cu / Ag and Sn-3.5Ag/Ag joints were studied. The results show that Ag_3Sn is parabolic growth. The growth rate constants of Ag_3Sn at different temperatures were calculated and the activation energies of Sn-37Pb / AgSn-3.5 Ag- / Ag and Sn-3.0Ag-0.5Cu/Ag interfacial compounds were obtained, which were 113.3 KJ / mol / 129.9 KJ / mol / 123.1 KJ / mol, respectively.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類(lèi)號(hào)】:TM914.41;TG454
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王志彬;賀虎;陳萌炯;黃三玻;王訓(xùn)春;;太陽(yáng)電池陣新型互連片微連接技術(shù)探討[J];航天器環(huán)境工程;2015年01期
2 余建;張紅;王勛榮;;硅太陽(yáng)能電池片焊接不良分析及對(duì)策[J];常州信息職業(yè)技術(shù)學(xué)院學(xué)報(bào);2014年02期
3 帥爭(zhēng)峰;楊宏;雷咸道;;晶體硅太陽(yáng)電池組件封裝的電學(xué)損失分析[J];電源技術(shù);2014年01期
4 施學(xué)斌;;太陽(yáng)能電池焊接工藝改進(jìn)及全自動(dòng)焊機(jī)的介紹[J];制造業(yè)自動(dòng)化;2013年15期
5 任現(xiàn)坤;徐振華;姜言森;賈河順;張春艷;馬繼磊;;晶體硅太陽(yáng)電池焊接工藝研究[J];當(dāng)代化工;2013年06期
6 喬鳳斌;張松;趙維剛;蔡智亮;;太陽(yáng)電池陣槍式微型電阻焊接系統(tǒng)設(shè)計(jì)與分析[J];電焊機(jī);2013年05期
7 張雨晗;張淑杰;包軼穎;;飛船電源系統(tǒng)太陽(yáng)電池銀焊點(diǎn)的熱應(yīng)力分析[J];航天器環(huán)境工程;2012年06期
8 蘇彬;李洋;;空間太陽(yáng)電池焊接影響因素研究[J];電源技術(shù);2012年10期
9 周志華;;電阻焊與激光焊技術(shù)在手機(jī)鋰電池制造工藝中的應(yīng)用與發(fā)展[J];制造業(yè)自動(dòng)化;2012年14期
10 王海東;帥爭(zhēng)鋒;王鶴;楊宏;;晶體硅太陽(yáng)能電池焊接技術(shù)及其發(fā)展趨勢(shì)[J];電子工藝技術(shù);2012年03期
,本文編號(hào):1799137
本文鏈接:http://www.sikaile.net/kejilunwen/jinshugongy/1799137.html