天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 交通工程論文 >

典型斷面渦激振動(dòng)與渦激力展向相關(guān)性研究

發(fā)布時(shí)間:2019-01-18 21:49
【摘要】:大跨度橋梁具有多階固有振動(dòng)模態(tài),在不同的來(lái)流風(fēng)速下,各階模態(tài)可能依次發(fā)生渦激共振。因此,研究柔性結(jié)構(gòu)各階模態(tài)渦振的起振風(fēng)速和最大振幅具有重要意義。雖然針對(duì)某階振動(dòng)模態(tài)下的矩形及H形斷面渦振性能已有很多研究,但最大渦振振幅隨模態(tài)頻率、質(zhì)量阻尼參數(shù)、氣動(dòng)阻尼等的變化規(guī)律還不明確。Scruton數(shù)即質(zhì)量阻尼參數(shù)是影響渦激振動(dòng)的重要因素,Sc數(shù)會(huì)影響渦激振動(dòng)鎖定區(qū)間和渦振振幅,但Sc數(shù)中的質(zhì)量參數(shù)和阻尼參數(shù)對(duì)渦激振動(dòng)影響不同,缺乏質(zhì)量參數(shù)和阻尼參數(shù)與渦振鎖定區(qū)間、渦振振幅之間的關(guān)系。另外,在實(shí)際風(fēng)作用下,沿橋軸線(xiàn)方向上的渦激力并不是完全相關(guān)的,特別是對(duì)于大跨橋梁,渦激力的空間相關(guān)性更加明顯,渦激力展向相關(guān)性的研究對(duì)渦振振幅預(yù)測(cè)有重要意義。 基于以上幾個(gè)問(wèn)題,本文主要進(jìn)行了如下幾個(gè)方面的研究: (1)介紹了橋梁風(fēng)致振動(dòng)的主要類(lèi)型,特別是對(duì)渦激振動(dòng)研究現(xiàn)狀做了概括,并對(duì)渦激振動(dòng)的相關(guān)理論做了簡(jiǎn)要的闡述。 (2)對(duì)寬高比B/D=6的大小比例矩形斷面及B/D=5的H形斷面進(jìn)行節(jié)段模型渦激振動(dòng)試驗(yàn)。相同質(zhì)量及阻尼比的同一模型在不同彈性懸掛頻率下的試驗(yàn)結(jié)果表明,矩形與H形斷面的豎向渦振振幅不隨懸掛頻率改變。 (3)分別研究了質(zhì)量、阻尼參數(shù)對(duì)兩類(lèi)斷面渦激共振的影響。結(jié)果表明,在相同質(zhì)量下,兩類(lèi)斷面的渦振振幅隨結(jié)構(gòu)阻尼比s的增加而顯著減。欢谙嗤Y(jié)構(gòu)阻尼比s下,兩類(lèi)斷面的最大豎向渦振振幅對(duì)質(zhì)量參數(shù)的變化都不敏感。應(yīng)用斷面顫振導(dǎo)數(shù)分析了不同質(zhì)量下的氣動(dòng)阻尼變化,在增加質(zhì)量的同時(shí)實(shí)際上降低了氣動(dòng)模態(tài)阻尼比a,因而可能引起最大渦振振幅對(duì)質(zhì)量變化不敏感。 (4)矩形斷面風(fēng)洞試驗(yàn)觀(guān)測(cè)到的兩個(gè)豎向渦振區(qū)間,其最大振幅比約2.2。分別計(jì)算了兩個(gè)渦振區(qū)間內(nèi)與最大振幅對(duì)應(yīng)的氣動(dòng)阻尼,結(jié)果表明在考慮氣動(dòng)阻尼影響下應(yīng)用簡(jiǎn)諧渦激力模型對(duì)最大振幅比進(jìn)行分析,發(fā)現(xiàn)最大振幅比不與St2成反比是因?yàn)閮蓚(gè)區(qū)間最大振幅處氣動(dòng)阻尼的差異。 (5)以矩形和H形斷面風(fēng)洞試驗(yàn)結(jié)果為基礎(chǔ),運(yùn)用FLUENT對(duì)矩形和H形斷面進(jìn)行數(shù)值模擬,數(shù)值模擬結(jié)果和風(fēng)洞試驗(yàn)結(jié)果吻合較好。 (6)通過(guò)圓柱體風(fēng)洞試驗(yàn),對(duì)渦激力展向相關(guān)性進(jìn)行了分析,結(jié)果表明不同截面處90°位置的展向相關(guān)性比180°位置處的展向相關(guān)性大,,渦激力的展向相關(guān)性與振幅、雷諾數(shù)有關(guān)。
[Abstract]:There are many natural vibration modes in long-span bridges, and vortex-induced resonance may occur at different wind speeds. Therefore, it is of great significance to study the initial wind speed and maximum amplitude of vortex vibration of flexible structures. Although much research has been done on the vortex vibration performance of rectangular and H-shaped sections in a certain vibration mode, the maximum amplitude of vortex vibration depends on the modal frequency and mass damping parameters. The variation of aerodynamic damping is not clear. Scruton number, that is, mass damping parameter, is an important factor affecting vortex-induced vibration, and Sc number will affect the locking range and amplitude of vortex-induced vibration. However, the mass and damping parameters in Sc number have different effects on the vortex-induced vibration, and the relationship between the mass parameter and damping parameter and the locking interval and amplitude of vortex-induced vibration is absent. In addition, under the action of actual wind, the vortex-induced forces along the axis of the bridge are not completely related, especially for long-span bridges, the spatial correlation of vortex-induced forces is more obvious. The study of the spanned correlation of vortex-induced forces is of great significance in predicting the amplitude of vortex-induced vibration. Based on the above problems, this paper mainly studies the following aspects: (1) the main types of wind-induced vibration of bridges are introduced, especially the research status of vortex-induced vibration is summarized. The theory of vortex-induced vibration is briefly described. (2) the vortex-induced vibration tests of the rectangular section with the ratio of width to height (B/D=6) and the H-section of the B/D=5 are carried out. The experimental results of the same model with the same mass and damping ratio at different elastic suspension frequencies show that the amplitude of vertical vortex vibration of rectangular and H-shaped sections does not change with the suspension frequency. (3) the effects of mass and damping parameters on the vortex-induced resonance of two kinds of cross-sections are studied. The results show that under the same mass, the amplitude of vortex vibration of the two sections decreases significantly with the increase of the damping ratio of the structure, while the maximum vertical vibration amplitude of the two sections is not sensitive to the variation of the mass parameters at the same damping ratio of the structure. The variation of aerodynamic damping under different mass is analyzed by using cross-section flutter derivative, and the aerodynamic mode damping ratio a is actually reduced while increasing mass, which may cause the maximum amplitude of vortex vibration to be insensitive to mass change. (4) the maximum amplitude ratio of the two vertical vortex vibration regions observed by wind tunnel test with rectangular section is about 2.2. The aerodynamic damping corresponding to the maximum amplitude in two vortex-vibration regions is calculated respectively. The results show that the harmonic vortex-induced force model is used to analyze the maximum amplitude ratio under the influence of aerodynamic damping. It is found that the maximum amplitude ratio is not inversely proportional to St2 because of the difference of aerodynamic damping at the maximum amplitude of the two regions. (5) based on the experimental results of rectangular and H-section wind tunnels, the numerical simulation of rectangular and H-shaped sections is carried out by using FLUENT. The results of numerical simulation are in good agreement with those of wind tunnel tests. (6) through the cylindrical wind tunnel test, the spanwise correlation of vortex-induced forces is analyzed. The results show that the spanwise correlation at 90 擄at different cross-sections is greater than that at 180 擄, and the spanned correlation and amplitude of vortex-induced forces are higher than those at 180 擄. Reynolds number.
【學(xué)位授予單位】:湖南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類(lèi)號(hào)】:U441.3

【參考文獻(xiàn)】

相關(guān)期刊論文 前7條

1 鮮榮;廖海黎;李明水;;大比例主梁節(jié)段模型渦激振動(dòng)風(fēng)洞試驗(yàn)分析[J];實(shí)驗(yàn)流體力學(xué);2009年04期

2 曹豐產(chǎn),項(xiàng)海帆;圓柱非定常繞流及渦致振動(dòng)的數(shù)值計(jì)算[J];水動(dòng)力學(xué)研究與進(jìn)展(A輯);2001年01期

3 方平治;顧明;;高雷諾數(shù)條件下二維方柱渦激振動(dòng)的數(shù)值模擬[J];同濟(jì)大學(xué)學(xué)報(bào)(自然科學(xué)版);2008年02期

4 張偉;葛耀君;;H形斷面橋梁風(fēng)致振動(dòng)的流場(chǎng)機(jī)理[J];土木工程學(xué)報(bào);2009年05期

5 鮮榮;廖海黎;李明水;;大跨主梁沿跨向渦振Scanlan非線(xiàn)性模型應(yīng)用[J];振動(dòng)與沖擊;2009年04期

6 周濤;朱樂(lè)東;郭震山;;經(jīng)驗(yàn)非線(xiàn)性渦激力模型參數(shù)識(shí)別[J];振動(dòng)與沖擊;2011年03期

7 劉志文;周帥;陳政清;;寬高比為4的矩形斷面渦激振動(dòng)響應(yīng)數(shù)值模擬[J];振動(dòng)與沖擊;2011年11期



本文編號(hào):2411163

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/jiaotonggongchenglunwen/2411163.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶(hù)cd696***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com