大節(jié)段鋼箱梁線形控制關(guān)鍵技術(shù)研究
本文選題:大節(jié)段鋼箱梁 + 合理施工方案; 參考:《華南理工大學(xué)》2014年碩士論文
【摘要】:與混凝土梁橋相比,鋼箱梁橋具有跨越能力大、適合工業(yè)化制造、便于運(yùn)輸、安裝速度快和修復(fù)及更換容易等特點(diǎn),在現(xiàn)代橋梁設(shè)計(jì)和建造中得到了廣泛的應(yīng)用。為了滿足橋梁受力簡(jiǎn)單、施工方便、跨越能力大等要求,連續(xù)鋼箱梁橋在大跨度梁式橋里得到了越來(lái)越廣泛的應(yīng)用。尤其在沿海、跨海工程中,選擇大節(jié)段吊裝施工更好地發(fā)揮鋼箱梁工廠化制造,海上施工速度快的特點(diǎn)。 也正因?yàn)椴捎昧舜蠊?jié)段施工方法,橋梁線形基本上在制造階段已經(jīng)設(shè)定并焊接好,在橋位現(xiàn)場(chǎng)所能調(diào)整的范圍非常有限,故有必要進(jìn)行全過(guò)程的線形控制,確保最終成橋線形滿足目標(biāo)要求。本文以在建的港珠澳大橋非通航孔橋?yàn)楣こ瘫尘,針?duì)施工控制前期有限元建模計(jì)算及后期現(xiàn)場(chǎng)施工控制工作過(guò)程中遇到的實(shí)際問(wèn)題進(jìn)行以下幾方面的研究: (1)連續(xù)鋼箱梁橋合理施工方案的確定。 基于無(wú)應(yīng)力狀態(tài)法,對(duì)無(wú)應(yīng)力線形進(jìn)行了推導(dǎo),分析了簡(jiǎn)支梁以及連續(xù)梁施工過(guò)程與最終狀態(tài)的關(guān)系。提出了基于某一目標(biāo)狀態(tài)的無(wú)應(yīng)力線形的觀點(diǎn)。在比較分析以整跨為一大節(jié)段和帶懸臂的大節(jié)段的劃分方法優(yōu)缺點(diǎn)的基礎(chǔ)上,得出帶懸臂的大節(jié)段劃分方法更利于施工和更好滿足結(jié)構(gòu)受力狀態(tài)的結(jié)論。結(jié)合工程實(shí)例,比較分析了基于一次成橋目標(biāo)狀態(tài)和基于施工過(guò)程成橋目標(biāo)狀態(tài)的兩種施工方案。 (2)鋼箱梁無(wú)應(yīng)力制造線形及下料長(zhǎng)度計(jì)算。 基于施工全過(guò)程控制思想,對(duì)鋼箱梁無(wú)應(yīng)力制造線形及下料尺寸進(jìn)行研究。利用現(xiàn)有有限元施工模型的計(jì)算結(jié)果,通過(guò)計(jì)算出鋼箱梁梁段間無(wú)應(yīng)力夾角和大節(jié)段接縫處的相對(duì)關(guān)系的方法間接得到無(wú)應(yīng)力制造線形及其他相關(guān)尺寸。為同類型橋梁的制造線形和下料長(zhǎng)度的計(jì)算提供了參考。 (3)制造和吊裝過(guò)程線形控制分析。 以港珠澳大橋非通航孔橋?yàn)楣こ瘫尘,,介紹了其鋼箱梁的制造和吊裝方法,并分析了在制造和吊裝過(guò)程中可能出現(xiàn)的引起線形誤差的因素。在敏感性分析的基礎(chǔ)上,確定了主要影響因素,為后續(xù)的線形控制提供了理論參考。
[Abstract]:Compared with concrete girder bridge, steel box girder bridge is widely used in modern bridge design and construction due to its advantages of large span capacity, suitable for industrial manufacture, convenient transportation, quick installation and easy repair and replacement. In order to meet the requirements of simple force, convenient construction and large span capacity, continuous steel box girder bridges are more and more widely used in long-span girder bridges. Especially in coastal and sea crossing projects, large section hoisting construction is chosen to better play the characteristics of factory manufacture of steel box girders and fast construction speed at sea. It is also because of the large section construction method that the bridge alignment has basically been set and welded in the manufacturing stage, and the range of adjustment at the bridge site is very limited, so it is necessary to carry out the whole process of alignment control. Ensure that the final bridge alignment meets the target requirements. Based on the non-navigable bridge of Hong Kong-Zhuhai-Macao Bridge under construction, the following aspects are studied in this paper: (1) the finite element modeling and calculation in the early stage of construction control and the practical problems encountered in the process of construction control in the later stage are studied in the following aspects: 1) determination of reasonable construction scheme of continuous steel box girder bridge. Based on the stress-free state method, the stress-free linear shape is derived, and the relationship between the construction process and the final state of simply supported beam and continuous beam is analyzed. The viewpoint of stress-free linear form based on a certain target state is presented. On the basis of comparing and analyzing the advantages and disadvantages of dividing the whole span into a large segment and a large segment with a cantilever, it is concluded that the large segment partition method with a cantilever is more conducive to construction and better meets the stress state of the structure. Combined with engineering examples, two construction schemes are compared and analyzed, which are based on the target state of the primary bridge and the target state of the bridge based on the construction process. Steel box girder non-stress manufacturing line and material length calculation. Based on the idea of whole construction process control, the line shape and blanking size of steel box girder without stress are studied. Based on the calculation results of the existing finite element construction model, the non-stress angle between the steel box girder sections and the relative relationship between the joints of the large segment are indirectly obtained by calculating the non-stress manufacturing lines and other relevant dimensions. It provides a reference for the calculation of manufacturing line and blanking length of the same type bridge. Line control analysis of manufacturing and hoisting process. Taking the non-navigable orifice bridge of HongKong-Zhuhai-Macao Bridge as the engineering background, this paper introduces the manufacturing and hoisting methods of the steel box girder, and analyzes the factors that may cause the linear error in the process of manufacture and hoisting. On the basis of sensitivity analysis, the main influencing factors are determined, which provides a theoretical reference for the following linear control.
【學(xué)位授予單位】:華南理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:U448.213
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉斯琴;何登甲;吳錦偉;;海心沙2~#橋水上鋼橋鋼箱梁分段分塊吊裝施工[J];廣東土木與建筑;2011年12期
2 張喜剛;蘇通大橋總體設(shè)計(jì)[J];公路;2004年07期
3 宋暉;孟凡超;;舟山西堠門(mén)大橋關(guān)鍵技術(shù)介紹[J];公路;2009年05期
4 李建慧;李愛(ài)群;郭彤;;斜拉橋不確定性參數(shù)隨機(jī)分析研究[J];公路交通科技;2008年11期
5 閆成軍;;跨鐵路鋼箱梁整體吊裝施工技術(shù)研究[J];科技創(chuàng)新與應(yīng)用;2012年12期
6 秦順全;斜拉橋安裝無(wú)應(yīng)力狀態(tài)控制法[J];橋梁建設(shè);2003年02期
7 周建林;吳沖;;大跨度斜拉橋扁平鋼箱梁懸臂拼裝截面變形分析[J];橋梁建設(shè);2006年01期
8 杜官民;;香港后海灣跨海大橋預(yù)制混凝土節(jié)段梁短線臺(tái)座法預(yù)制原理[J];橋梁建設(shè);2006年S1期
9 秦順全;;無(wú)應(yīng)力狀態(tài)控制法斜拉橋安裝計(jì)算的應(yīng)用[J];橋梁建設(shè);2008年02期
10 張希黔,韋亮,張宏勝;城市鋼箱梁結(jié)構(gòu)立交橋的特點(diǎn)及安裝技術(shù)[J];施工技術(shù);2004年09期
本文編號(hào):1899195
本文鏈接:http://www.sikaile.net/kejilunwen/jiaotonggongchenglunwen/1899195.html