波浪荷載作用下船閘人字門結(jié)構(gòu)疲勞分析
發(fā)布時間:2018-04-24 13:42
本文選題:人字閘門 + 有限元法。 參考:《重慶交通大學》2014年碩士論文
【摘要】:船閘人字閘門因其結(jié)構(gòu)形式布置合理、運行方便可靠、閘門啟閉力小以及節(jié)省材料等優(yōu)點,已經(jīng)成為大中型船閘的主要工作門型。在實際運行過程中,船閘人字門存在疲勞開裂問題。國內(nèi)外學者對大型船閘人字門開展有限元研究分析和水彈性材料的模型試驗,主要是基于人字閘門的結(jié)構(gòu)內(nèi)力計算,鮮有涉及人字門運行后的疲勞開裂研究。因此,在采用適當?shù)姆治龇椒▽Υl人字閘門進行結(jié)構(gòu)內(nèi)力計算的基礎(chǔ)上,進一步展開對結(jié)構(gòu)疲勞的研究,并提出合理的抗疲勞措施,具有較重要的理論及實際意義。 本文利用ANSYS有限元軟件建立人字閘門三維空間結(jié)構(gòu)有限元模型,針對依托工程選取不同工況進行有限元分析計算,并基于結(jié)構(gòu)疲勞理論,首次引入FE-SAFE疲勞計算軟件對人字閘門進行疲勞壽命分析,主要結(jié)論如下: 1、設(shè)計工況下,人字閘門的整體結(jié)構(gòu)朝下游側(cè)凸出,結(jié)構(gòu)變形和應(yīng)力呈現(xiàn)對稱分布趨勢,整體最大折算應(yīng)力與最大變形均位于面板中下部。面板結(jié)構(gòu)起到擋水和傳遞荷載的重要作用,在局部位置如面板與主梁連接處存在應(yīng)力集中現(xiàn)象。主梁結(jié)構(gòu)為主要受力構(gòu)件,其最大折算應(yīng)力出現(xiàn)在主梁端部,最大變形出現(xiàn)在主梁結(jié)構(gòu)跨中處,腹板處應(yīng)力值遠大于上下翼緣,易發(fā)生翹曲變形。 2、高水工況下,閘室內(nèi)外水位較高,靜水荷載作用于閘門的范圍更廣,閘門整體最大折算應(yīng)力與最大變形均位于面板中上部。由于人字閘門主橫梁按等荷載布置,上部主梁間距更大,導致上部結(jié)構(gòu)的內(nèi)力及變形也隨之增大。兩種工況下結(jié)構(gòu)整體最大變形相差54.41%~68.69%,整體折算應(yīng)力相差55.65%~64.08%,二者應(yīng)力和變形的變化趨勢相差甚大。 3、波浪荷載作用下閘門的疲勞分析結(jié)果表明,疲勞破壞主要出現(xiàn)在面板與主橫梁連接處與主橫梁端部。波高值從0.1增大到1.5m時,人字閘門疲勞對數(shù)壽命值相差42.3%。波高值線性遞增時,人字閘門疲勞循環(huán)次數(shù)按指數(shù)級遞減。 4、其他影響因素分析表明,殘余拉應(yīng)力導致人字閘門疲勞強度降低,殘余壓應(yīng)力存在時結(jié)果反之;材料表面參數(shù)與閘門疲勞壽命成反比,表面參數(shù)小于1.5時,結(jié)構(gòu)疲勞壽命遞減速度快,而這之后遞減趨勢變緩。 5、在人字閘門設(shè)計時,可從結(jié)構(gòu)選材、局部設(shè)計、殘余應(yīng)力控制、降低應(yīng)力幅值以及減小材料表面參數(shù)等五個方面提高結(jié)構(gòu)抗疲勞強度。
[Abstract]:The herringbone lock gate of ship lock has become the main working door type of large and medium ship lock because of its advantages such as reasonable arrangement of structure, convenient and reliable operation, small opening and closing force of gate and saving material. In the process of practical operation, the problem of fatigue cracking exists in herringbone gate of ship lock. The finite element analysis and hydroelastic material model test of large herringbone gate are carried out by scholars at home and abroad, mainly based on the calculation of structural internal force of herringbone gate, few of which are related to fatigue cracking of herringbone gate. Therefore, on the basis of the calculation of structural internal force of the herringbone gate of ship lock by appropriate analysis method, the further research on structural fatigue is carried out, and the reasonable anti-fatigue measures are put forward, which is of great theoretical and practical significance. In this paper, the finite element model of the three dimensional structure of the herringbone gate is established by using the ANSYS finite element software, and the finite element analysis and calculation are carried out according to the different working conditions of the engineering, and based on the theory of structural fatigue. The fatigue life of the herringbone gate is analyzed by FE-SAFE fatigue calculation software for the first time. The main conclusions are as follows: 1. Under the design condition, the whole structure of the herringbone gate is projecting downstream, the deformation and stress of the structure show a symmetrical distribution trend, and the whole maximum converted stress and the maximum deformation are all located in the middle and lower parts of the panel. The slab structure plays an important role in retaining water and transferring load, and there is stress concentration phenomenon in the local position such as the connection between the slab and the main beam. The main beam structure is the main force member, its maximum reduced stress appears in the end of the main beam, the maximum deformation occurs in the middle of the span of the main beam structure, the stress value of the web is much larger than the upper and lower flange, and the warping deformation is easy to occur. 2, under high water condition, the water level inside and outside the gate chamber is higher, and the range of static water load acting on the gate is wider. The maximum commutation stress and the maximum deformation of the gate are all located in the upper part of the slab. As the main beam of the herringbone gate is arranged according to the equal load, the distance between the upper main beams is larger, which leads to the increase of the internal force and deformation of the superstructure. The difference between the maximum deformation of the whole structure and that of the whole structure under the two working conditions is 54.41 and 68.699.The difference of the integral converted stress is 55.65 and 64.08, and the variation trend of the stress and deformation is quite different. 3. The fatigue analysis results of the gate under wave load show that the fatigue failure mainly occurs at the junction between the slab and the main beam and at the end of the main beam. When the wave height is increased from 0.1 to 1.5 m, the logarithmic fatigue life of the herringbone gate is 42.3. When the wave height increases linearly, the fatigue cycle times of herringbone gate decrease exponentially. 4. The analysis of other influencing factors shows that the fatigue strength of the herringbone gate decreases due to the residual tensile stress, and the results are reversed when the residual compressive stress exists, and the material surface parameters are inversely proportional to the fatigue life of the gate, and when the surface parameters are less than 1.5, The fatigue life of the structure decreases rapidly, but the decreasing trend slows down after that. 5. In the design of herringbone gate, the fatigue strength of the structure can be improved from five aspects: material selection, local design, residual stress control, reducing stress amplitude and decreasing material surface parameters.
【學位授予單位】:重慶交通大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:U641.3
【參考文獻】
相關(guān)期刊論文 前10條
1 范天佑,郭瑞平;某水壩船閘人字門拉桿破壞的斷裂動力學分析[J];北京理工大學學報;2004年07期
2 劉利軍;賈維;夏倩;;柴油機噴油泵接頭疲勞壽命的有限元分析[J];柴油機;2010年02期
3 徐健鵬,蔣志;整體式船閘結(jié)構(gòu)計算程序[J];廣東水利水電;2001年03期
4 仇強;秦圓圓;岳慶河;侯作啟;劉福勝;;基于ANSYS的撐臥式鋼閘門模擬研究[J];山東農(nóng)業(yè)大學學報(自然科學版);2009年03期
5 陳陽,李焱,孟祥瑋;船閘引航道內(nèi)水面波動的二維數(shù)學模型研究[J];水道港口;1998年03期
6 李永新;;船閘人字閘門結(jié)構(gòu)三維有限元分析[J];水電能源科學;2011年01期
7 鄭登有;提高人字閘門抗疲勞強度的思考[J];中國三峽建設(shè);2001年11期
8 湯長書,閆如義,董國威,曾~@;大型船閘人字閘門的塑性疲勞和脆性斷裂[J];中國三峽建設(shè);2002年11期
9 張遜;姜年朝;;基于ANSYS/FE-SAFE的模具聯(lián)接螺栓疲勞仿真分析[J];機械工程與自動化;2008年01期
10 鄭寶友;周華興;李焱;;船閘引航道長波波動對人字閘門的影響[J];水運工程;2008年02期
,本文編號:1796882
本文鏈接:http://www.sikaile.net/kejilunwen/jiaotonggongchenglunwen/1796882.html
教材專著