隧道坍方處治的數(shù)值模擬與優(yōu)化分析
本文關(guān)鍵詞: 隧道 坍方 支護(hù)機(jī)制 力學(xué)行為 數(shù)值模擬 優(yōu)化途徑 出處:《成都理工大學(xué)》2014年碩士論文 論文類型:學(xué)位論文
【摘要】:我國西南地區(qū)山區(qū)分布廣泛,地形地貌條件極為復(fù)雜,在這些地方修筑公路或者鐵路,隧道工程往往占有很大的比重,而在隧道修建的過程中遇到的圍巖穩(wěn)定性問題日益突出,隧道坍方是其中最常見的災(zāi)害現(xiàn)象之一。它具有高危性、高頻性以及高突發(fā)性等特點(diǎn),若治理不當(dāng),不但延緩工期,而且增加建設(shè)成本,還會留下重大安全隱患。因此,對坍方事故的影響因素和處治方法進(jìn)行總結(jié),對以后隧道的快速、安全施工具有較大的實際意義。 本文采用理論分析總結(jié)與數(shù)值模擬手段,對隧道坍方類型及處治方法、隧道坍方處治典型措施作用機(jī)制及隧道坍方處治施工過程力學(xué)行為進(jìn)行了研究,最后總結(jié)了隧道坍方處治設(shè)計的基本原則和優(yōu)化途徑,獲得的主要成果如下: (1)通過對諸多隧道坍方事故案例的分析,總結(jié)出隧道坍方的影響因素主要有不良的地質(zhì)條件、地下水、設(shè)計因素、施工和管理因素。并從規(guī)模大小、機(jī)理、控制因素和坍方位置的角度對隧道坍方進(jìn)行系統(tǒng)分類。 (2)結(jié)合隧道坍方預(yù)支護(hù)原理,采用理論分析和力學(xué)推導(dǎo)方法研究了超前小導(dǎo)管注漿、管棚和噴錨支護(hù)等典型支護(hù)措施的作用機(jī)制,建立了管棚在隧道開挖中的力學(xué)模型,采用FLAC3D軟件對不同工況鋼拱架支護(hù)下的圍巖應(yīng)力、位移情況進(jìn)行數(shù)值模擬分析,研究得出:1)鋼拱架的設(shè)置,對拱腳應(yīng)力集中現(xiàn)象有抑制作用,同時能夠減少拱頂出現(xiàn)低應(yīng)力區(qū)的范圍,并可以有效抑制拱頂和底板的豎向位移;2)隨著鋼拱架設(shè)置間距的加大,其拱內(nèi)最大軸力和彎矩值均有增加;3)鋼拱架的最大軸力主要發(fā)生在拱頂處,最大彎矩主要發(fā)生在拱腰和拱頂處,拱腳處彎矩很小。 (3)以廣甘高速公路沈家山隧道坍方事故為依托,通過FLAC3D數(shù)值計算軟件模擬分析坍方段施工力學(xué)行為引起的圍巖應(yīng)力場、位移場和塑性區(qū)變化規(guī)律,得出:1)拉應(yīng)力最大主應(yīng)力出現(xiàn)在拱頂60°范圍以及底板中央,壓應(yīng)力最大主應(yīng)力出現(xiàn)在隧道中間部分的拱腳處;2)拱頂下沉最大位移主要分布在拱頂60°范圍內(nèi),底板隆起最大位移主要分布在底板中央1/3處;3)隨著開挖的進(jìn)行,坍腔中央也開始出現(xiàn)塑性區(qū)(以拉伸屈服為主),拱腳塑性區(qū)(以剪切屈服為主)范圍明顯增大,且向圍巖深處發(fā)展,若不加以控制,拱腳部位可能會發(fā)生剪切破壞。4)結(jié)果表明處治措施在整個坍方治理過程中發(fā)揮了積極的作用,且拱腳和拱頂60°范圍是本次坍方處治施工中應(yīng)當(dāng)重點(diǎn)支護(hù)的部位。 (4)隧道坍方處治一般應(yīng)遵循“先治水、后加固、防擴(kuò)大、再處理”的基本原則,在有條件的前提下“寧早勿遲”,以達(dá)到安全、快速、經(jīng)濟(jì)的工程目的。并從開挖手段和方法的選擇、支護(hù)方式的選取、信息化指導(dǎo)施工、施工管理水平的提高等方面闡述隧道坍方處治優(yōu)化設(shè)計的基本途徑。
[Abstract]:The mountainous areas in southwest China are widely distributed, and the terrain and geomorphology conditions are very complex. In these places, tunnel projects often occupy a large proportion in the construction of highways or railways. In the process of tunnel construction, the surrounding rock stability problem is increasingly prominent, tunnel collapse is one of the most common disaster phenomenon. It has the characteristics of high risk, high frequency and high sudden, if not treated properly. Not only delay the construction period, but also increase the construction cost, but also leave a major safety risk. Therefore, the factors affecting the landslide accident and treatment methods are summarized, and the tunnel in the future is fast. Safety construction is of great practical significance. By means of theoretical analysis and numerical simulation, this paper studies the types and treatment methods of tunnel collapse, the action mechanism of typical measures of tunnel collapse treatment and the mechanical behavior of tunnel collapse treatment construction process. Finally, the basic principles and optimization approaches of tunnel collapse treatment design are summarized. The main results obtained are as follows: 1) through the analysis of many tunnel collapse cases, it is concluded that the main influencing factors of tunnel collapse are poor geological conditions, groundwater, design factors, construction and management factors. The mechanism, controlling factors and the angle of collapse position are systematically classified for tunnel collapse. Combined with the principle of tunnel collapse pre-support, the mechanism of typical supporting measures, such as small pipe grouting, pipe shed and shotcrete anchor support, is studied by theoretical analysis and mechanical derivation. The mechanical model of pipe shed in tunnel excavation is established, and the surrounding rock stress and displacement of steel arch support under different working conditions are numerically simulated and analyzed by FLAC3D software. It is concluded that the steel arch structure can restrain the stress concentration of arch foot, reduce the range of low stress area, and effectively restrain the vertical displacement of arch roof and bottom plate. 2) with the increase of the distance between steel arches, the maximum axial force and bending moment increase; 3) the maximum axial force of the steel arch is mainly at the top of the arch, and the maximum bending moment mainly occurs at the arch waist and the arch top, and the bending moment at the arch foot is very small. Based on the collapse accident of Shenjiashan Tunnel in Guanggan Expressway, the stress field of surrounding rock caused by mechanical behavior in construction of collapse section is simulated and analyzed by FLAC3D numerical calculation software. The variation of displacement field and plastic zone shows that the maximum principal stress of tensile stress appears in the 60 擄range of arch top and the center of bottom plate, and the maximum principal stress of compressive stress appears at the arch foot in the middle part of tunnel. 2) the maximum displacement of the dome subsidence is mainly distributed in the range of 60 擄of the arch top, and the maximum displacement of the floor uplift is mainly distributed in the center of the floor 1/3; 3) with the excavation, the plastic zone (tensile yield is the main part) in the center of the cavern, and the plastic zone (shear yield is the main area) at the arch foot increases obviously, and develops to the deep surrounding rock, if not controlled. The results showed that the treatment measures played an active role in the whole process of treatment. And the arch foot and the arch roof 60 擄range should be the key support in the treatment of the landslide. 4) the treatment of tunnel collapse should generally follow the basic principle of "treating water first, then strengthening, preventing expansion, and treating again", and under the precondition of conditions, "better early than late", in order to achieve safety and speed. From the aspects of the selection of excavation means and methods, the selection of supporting methods, the guidance of information construction and the improvement of construction management level, this paper expounds the basic ways of optimal design of tunnel collapse treatment.
【學(xué)位授予單位】:成都理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:U458.3
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 吳夢軍,連晉興,黃倫海,邱長林;連拱隧道圍巖穩(wěn)定性模型試驗[J];地下空間;2004年04期
2 汪成兵;朱合華;;隧道塌方影響因素離散元分析[J];地下空間與工程學(xué)報;2007年S2期
3 吳強(qiáng);劉新榮;杜小平;舒志樂;段永勝;;馬埡口隧道塌方事故發(fā)生機(jī)理的研究[J];地下空間與工程學(xué)報;2009年06期
4 張航;王述紅;郭牡丹;袁國良;;巖體隧道三維建模及圍巖非連續(xù)變形動態(tài)分析[J];地下空間與工程學(xué)報;2012年01期
5 周小文,濮家騮,包承鋼;砂土中隧洞開挖穩(wěn)定機(jī)理及松動土壓力研究[J];長江科學(xué)院院報;1999年04期
6 李釗;;隧道坍方突發(fā)事件風(fēng)險原因統(tǒng)計及范例推理[J];鐵道科學(xué)與工程學(xué)報;2009年04期
7 任偉中;節(jié)理圍巖特性及其錨固效應(yīng)模型試驗研究[J];地球科學(xué);1997年06期
8 王以功,林登閣,柴天星;錨注支護(hù)機(jī)理及參數(shù)優(yōu)化研究[J];地質(zhì)與勘探;2002年03期
9 孫廣忠,張文彬;一種常見的巖體結(jié)構(gòu)——板裂結(jié)構(gòu)及其力學(xué)模型[J];地質(zhì)科學(xué);1985年03期
10 韓守信;張青松;;新奧法隧道施工塌方原因事故樹分析[J];能源與環(huán)境;2009年05期
相關(guān)博士學(xué)位論文 前1條
1 郭磊;淺埋暗挖水下隧道管棚作用機(jī)理及開挖的擾動效應(yīng)研究[D];中南大學(xué);2010年
,本文編號:1477058
本文鏈接:http://www.sikaile.net/kejilunwen/jiaotonggongchenglunwen/1477058.html