基于靜動力特性的多塔長跨斜拉橋結(jié)構(gòu)體系剛度研究
本文關(guān)鍵詞:基于靜動力特性的多塔長跨斜拉橋結(jié)構(gòu)體系剛度研究 出處:《北京交通大學(xué)》2014年博士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 橋梁工程 多塔長跨斜拉橋 剛度 結(jié)構(gòu)體系 參數(shù)敏感性分析 靜動力特性 地震反應(yīng)
【摘要】:摘要:多塔斜拉橋在二十世紀(jì)中期就已經(jīng)出現(xiàn),但是發(fā)展一直較緩慢,制約其發(fā)展的一個關(guān)鍵因素就是整體剛度偏弱,為此國內(nèi)外學(xué)者開展了一定的研究。當(dāng)多塔斜拉橋進(jìn)入大跨徑時,其剛度問題更加突出,本文在前人研究成果的基礎(chǔ)上,結(jié)合交通運輸部科技項目“多塔長大斜拉橋關(guān)鍵技術(shù)研究”(項目號:2013315494011),主要針對多塔長跨斜拉橋的剛度相關(guān)問題進(jìn)行系統(tǒng)性的研究。本文的主要工作包括以下幾個方面: (1)提出了多塔斜拉橋整體剛度指標(biāo),定義了多塔斜拉橋豎向剛度代表值,并對其限值進(jìn)行了討論,為本文的后續(xù)研究提供了判別標(biāo)準(zhǔn)。在廣泛收集資料的基礎(chǔ)上,對已建及擬建多塔斜拉橋的結(jié)構(gòu)參數(shù)進(jìn)行了統(tǒng)計并結(jié)合理論分析提出了多塔斜拉橋的合理塔跨比區(qū)間。 (2)提出了多塔斜拉橋結(jié)構(gòu)變形計算的隔離結(jié)構(gòu)法,基于Matlab語言編制了相應(yīng)程序,提高了剛度參數(shù)優(yōu)化時主梁活載變形計算的效率;诙嗨崩瓨虿煌诔R(guī)斜拉橋(雙塔或單塔斜拉橋)的受力特點,推導(dǎo)了考慮塔梁剛度的拉索支承剛度系數(shù)的計算公式并進(jìn)行了驗證。推導(dǎo)公式時,認(rèn)為中間塔兩側(cè)主梁不能與有輔助墩的邊跨主梁一樣視為剛性梁,而是具有一定的柔度,只對橋塔提供一定程度的約束,同時考慮了橋塔自身抵抗變形的能力,最后討論了橋塔剛度、主梁剛度、拉索剛度以及拉索傾角等因素對拉索支承剛度的影響,得出的結(jié)論可以用于指導(dǎo)概念設(shè)計。 (3)以瓊州海峽大橋方案之一的主跨828m的五塔斜拉橋為工程算例,研究了多塔長跨斜拉橋剛度問題的解決方法。通過參數(shù)敏感性分析,對原方案的剛度參數(shù)進(jìn)行了優(yōu)化,給出了塔梁剛度取值的合理匹配區(qū)間,確定了拉索剛度以及塔跨比的合理取值范圍。對采用各種加勁索的方案進(jìn)行了比較分析,給出了基于靜力特性優(yōu)化后的瓊州海峽大橋方案并進(jìn)行了力學(xué)特性檢算。 (4)提出了多塔斜拉橋塔梁剛度比的概念,基于拉索支承剛度系數(shù)計算式給出了相應(yīng)的數(shù)學(xué)表達(dá)式。與索的剛度相比,塔的剛度與梁的剛度對多塔斜拉橋整體剛度的影響較大,設(shè)計自由度也較大,從剛度的角度出發(fā),可通過塔梁剛度比將多塔斜拉橋劃分為柔性塔體系與剛性塔體系。 (5)提出了一種新型的多塔斜拉橋結(jié)構(gòu)體系一改進(jìn)的莫蘭迪結(jié)構(gòu)體系(AMSS)。解決了柔性塔體系的多塔(四塔及以上)長跨斜拉橋的剛度問題。該體系是在斜拉橋索塔順橋向兩側(cè)間隔一定距離設(shè)置塔梁豎向支座,從而同時實現(xiàn)塔梁之間的豎向約束和轉(zhuǎn)動約束,在力學(xué)行為上接近塔梁固結(jié),而構(gòu)造上表現(xiàn)為塔梁分離。通過對其力學(xué)性能分析,發(fā)現(xiàn)其具有塔梁固結(jié)體系提高整體剛度的功能,同時避免塔梁固結(jié)處產(chǎn)生較大的彎矩。雙支承間距的增大可以提高整體剛度也同時帶來了托架根部彎矩增大的問題,通過有限元分析對雙支承間距合理取值進(jìn)行了研究。通過實橋試驗數(shù)據(jù)分析了新型結(jié)構(gòu)體系的合理性及解決柔性塔多塔長跨斜拉橋體系剛度問題的有效性。 (6)基于動力特性及地震反應(yīng)分析對瓊州海峽大橋方案做了進(jìn)一步優(yōu)化。多塔斜拉橋剛度的增大,提高了結(jié)構(gòu)的靜力抗變形能力,但是對動力特性的影響不能一概而論。本文分析了提高橋塔剛度和改變塔梁支承體系等措施對瓊州海峽大橋方案動力特性的影響,并基于靜動力特性總結(jié)了多塔斜拉橋剛度合理取值的方法。 (7)探討了采用反分析對多塔斜拉橋結(jié)構(gòu)剛度參數(shù)進(jìn)行優(yōu)化的方法。在剛度參數(shù)敏感性分析的基礎(chǔ)上,給定一個撓度期望值,反演分析剛度參數(shù),使得參數(shù)優(yōu)化計算更具針對性,避免需要反復(fù)調(diào)整初始參數(shù)的大量有限元試探性分析。參數(shù)優(yōu)化分析時,采用Ansys軟件參數(shù)化建模技術(shù)建立了瓊州海峽大橋方案的有限元模型,采用Matlab語言編制了相應(yīng)的參數(shù)優(yōu)化模型,并通過DOS內(nèi)部命令,實現(xiàn)兩種軟件之間的對口連接,使其能夠相互調(diào)用,降低了編程工作量,提到了工作效率。
[Abstract]:Abstract: it has already appeared in the middle of the twentieth Century multi pylon cable-stayed bridge, but the development has been relatively slow, one of the key factors restricting the development of the overall stiffness is weak, therefore the domestic and foreign scholars carried out some research. When entering the large span cable-stayed bridge, the stiffness problem is more prominent, based on the results of previous studies, research on the key technology of multi tower cable-stayed bridge with long Department of transportation science and technology project "(project number: 2013315494011), the main systematic research on the stiffness problems related to multi tower long span cable-stayed bridge. The main work of this paper includes the following aspects:
(1) the overall stiffness index of multi tower cable-stayed bridge, cable-stayed bridge defines the vertical stiffness of the representative value and the limit value are discussed, provide a criterion for the follow-up research. On the basis of widely collected data, has been built on the cable-stayed bridge. The statistical parameters were combined with the theoretical analysis, put forward reasonable tower cable-stayed bridge span ratio range.
(2) put forward the method to calculate the deformation of the isolation structure of multi tower cable-stayed bridge structure, Matlab language and the corresponding program is designed based on improved stiffness parameter optimization of main beam live load deformation calculation efficiency. The cable-stayed bridge is different from the conventional cable-stayed bridge (based on Twin Towers or single tower cable-stayed bridge) stress characteristics and considering the calculation formula of stiffness coefficient of cable support tower beam stiffness and verified. The formula, that both sides of the middle tower girder and pier not auxiliary side span beam as a rigid beam, but has a certain flexibility, only provide a certain degree of restraint on the tower, also considered the ability to resist deformation of the tower itself, finally discusses the bridge stiffness, girder stiffness, cable stiffness and cable angle and other factors on the stiffness of cable support, the conclusion can be used to guide the design concept.
(3) to the main span of 828m of the Qiongzhou Strait Bridge of the five tower cable-stayed bridge as engineering example, studied the solving methods of multi tower long span cable stayed bridge stiffness problem. Through the sensitivity analysis of parameters, the stiffness parameters of the original scheme was optimized, gives reasonable tower beam stiffness values the matching range, determine the reasonable range of cable stiffness and column span ratio. Using various cable schemes are compared and analyzed, the Qiongzhou Strait Bridge Scheme Optimization Based on the static characteristics and the mechanical properties of calculation are given.
(4) put forward the concept of multi tower cable-stayed bridge stiffness ratio, stiffness of cable support based on the formula for calculating the corresponding mathematical expressions. Compared with the stiffness of cable, tower rigidity of cable-stayed bridge and the influence of the stiffness of the beam is larger, the degree of freedom of design is large. Starting from the angle of stiffness, the tower beam stiffness ratio will be divided into flexible cable-stayed bridge tower tower system and rigid system.
(5) proposed a new type of multi tower cable-stayed bridge structure system, an improved structure of Morandi (AMSS). To solve the flexible tower system tower (four tower and above) stiffness of long span cable-stayed bridge. The system is in the tower along the bridge on both sides of a certain distance away from the set of tower and beam the vertical bearing of cable-stayed bridge, to realize the vertical constraint between tower and beam and rotational constraints, in mechanical behavior near tower girder consolidation, and structural performance for the tower beam separation. Based on the analysis of its mechanical properties, and found that it have improved the tower beam consolidation system stiffness function, and avoid large bending moment the tower beam consolidation. Double spacing increases can improve the overall stiffness also brought the increase of bracket root bending moment problems, through the finite element analysis, the reasonable value of double spacing is studied. The new structure was analyzed by real bridge test data The validity and rationality of solving the flexible Taduota long span cable stayed bridge stiffness of the system.
(6) dynamic characteristics and seismic response analysis to optimize the scheme of the Qiongzhou Strait Bridge. Based on the stiffness increasing multi pylon cable-stayed bridge, improve the structure of the static deformation resistance, but can not be on the dynamic characteristics. This paper analyzes the impact of improving the tower stiffness and changing the tower beam support system and other measures. The dynamic characteristics of the Qiongzhou Strait Bridge project, and summarizes the methods of static and dynamic stiffness reasonable value of cable-stayed bridge based on.
(7) was studied by using inverse analysis method to optimize the stiffness parameters of cable-stayed bridge structure. Based on the sensitivity analysis of stiffness parameters, given a deflection expectations, inversion analysis of stiffness parameter optimization calculation, more targeted the parameters, avoiding the need for finite element analysis of a large number of tentative adjustment the initial parameters. Parameter optimization analysis, modeling technology to establish the finite element model of the Qiongzhou Strait Bridge scheme using Ansys software parameters, parameter optimization model is developed by the Matlab language, and through the DOS internal commands, realize the connection between the two kinds of software counterparts, which can call each other, reduce programming the workload, referred to the work efficiency.
【學(xué)位授予單位】:北京交通大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2014
【分類號】:U441.4;U448.27
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張春曉;解決非線性最小二乘問題的兩種方法[J];青海大學(xué)學(xué)報(自然科學(xué)版);2003年05期
2 葉愛君,胡世德,范立礎(chǔ);斜拉橋抗震結(jié)構(gòu)體系研究[J];橋梁建設(shè);2002年04期
3 黃曉航;夷陵長江大橋三塔斜拉橋施工監(jiān)控[J];橋梁建設(shè);2003年03期
4 孫獻(xiàn)國,鐘原,安長軍;濱州黃河公路大橋設(shè)計與施工[J];橋梁建設(shè);2003年06期
5 喻梅,李喬;結(jié)構(gòu)布置對多塔斜拉橋力學(xué)行為的影響[J];橋梁建設(shè);2004年02期
6 張燕飛;高宗余;梅新詠;;多塔大跨鐵路斜拉橋方案研究[J];橋梁建設(shè);2010年03期
7 張俊平,車惠民;鐵路橋梁橫向剛度的初步研究[J];橋梁建設(shè);1996年02期
8 喻梅;淺談多塔斜拉橋[J];四川建筑;2003年03期
9 楊興旺,趙雷;大跨度三塔斜拉橋穩(wěn)定性分析[J];四川建筑;2003年04期
10 柳惠芬,姚玲森,易建國;雙塔斜拉橋的實用簡化分析[J];上海公路;1997年02期
相關(guān)博士學(xué)位論文 前9條
1 汪峰;大跨徑三塔結(jié)合梁斜拉橋幾何非線性分析研究[D];武漢理工大學(xué);2010年
2 劉金龍;地震作用下多塔斜拉橋失效模式控制研究[D];哈爾濱工業(yè)大學(xué);2009年
3 夏國平;斜拉—懸索協(xié)作體系橋的結(jié)構(gòu)體系研究及其彈性地基梁算法[D];大連理工大學(xué);2010年
4 勾紅葉;大跨度預(yù)應(yīng)力混凝土V形剛構(gòu)拱組合橋受力行為研究[D];西南交通大學(xué);2010年
5 李偉;大跨度斜拉橋靜動力可靠度分析[D];華南理工大學(xué);2010年
6 萬其柏;斜拉—剛構(gòu)協(xié)作體系橋的靜力特性研究[D];大連理工大學(xué);2010年
7 易倫雄;三塔雙主跨雙線鐵路斜拉橋豎向剛度問題的研究[D];中南大學(xué);2011年
8 王龍飛;大跨徑三塔結(jié)合梁斜拉橋極限承載能力研究[D];武漢理工大學(xué);2012年
9 高小妮;多塔斜拉—自錨式懸索組合體系橋梁結(jié)構(gòu)理論分析與模型試驗研究[D];長安大學(xué);2012年
,本文編號:1384653
本文鏈接:http://www.sikaile.net/kejilunwen/jiaotonggongchenglunwen/1384653.html