基于結(jié)合面誤差建模的裝配精度預(yù)測與優(yōu)化研究
[Abstract]:The purpose of this paper is to realize the precision prediction and optimization of complex assembly. Based on the analysis and research of the method of the assembly error modeling at home and abroad, the error accumulation and transmission mechanism of the assembly, the reliability theory of the mechanical product and the tolerance optimization method, the error modeling method of the part geometry under the multi-tolerance coupling is described in detail. In this paper, the error forming mechanism and the error transfer attribute of the combined surface are analyzed, and the method for solving the error propagation path of the complex assembly is proposed, and the assembly error model is established, and the assembly accuracy prediction and the tolerance optimization are realized. On this basis, the framework and implementation method of the precision design system under the digital environment are put forward, and the software system platform of precision design is developed. The main contents of the thesis are as follows: (1) The error model of the part geometry under the multi-tolerance coupling is established. The error variation of the geometric elements is described by means of the small-displacement rotation method. According to the multi-tolerance coupling of common geometric elements, the corresponding error variation inequality and the constraint inequality are established. On this basis, the actual machining error is simulated by the Monte Carlo method, and the actual variation interval bandwidth of each error component of the geometric element is obtained, which lays the important foundation for solving the joint surface error. And the explicit function relation between the bandwidth and the tolerance of the actual variation interval of the geometric element error component is established through the response surface method, and the important guarantee is provided for improving the efficiency of the following tolerance optimization. (2) The joint surface error modeling method is proposed, and the error transfer property of the joint surface is analyzed. The error analysis method of the assembly body based on the combination surface is put forward. Based on the accumulation and transfer function of the combined face error, the accumulative formation mechanism of all kinds of joint surface errors is analyzed from the error accumulation angle, and the positioning and restraining effect of the different combination face parts is analyzed from the error transfer angle. The error transfer property of all kinds of bonding surfaces is given. Based on the relation between the adjacent binding surfaces, the method of solving the error transfer attribute of the combination surface group is discussed. In view of the mutual influence between the error transfer properties of the parallel combination surface, a method for solving the actual error transfer property of the parallel combination plane based on the assembly and positioning priority is put forward, and the flow of the parallel combination surface group error modeling is described, which lays a foundation for building the assembly error model. (3) The method for solving the error propagation path of the assembly based on the JSS matrix is proposed. The description requirement of complex assembly relation is analyzed. Based on the theory of multi-color set, the Boolean element value in the multi-color set matrix is replaced by the combination surface symbol, and the composition, assembly relation, joint surface geometry type and connection mode of the assembly body can be described. The combined surface symbol matrix (JSS matrix) of multi-dimensional information such as the matching property. The method for searching the error propagation path of the assembly body based on the JSS matrix is put forward, the solution of the main error propagation path of the assembly body is realized, the complexity of the error analysis of the assembly body is effectively reduced, and an important basis for modeling the error of the assembly body is provided. On this basis, the multi-correlation JSS matrix method for multi-level complex assembly error transfer path solution is discussed. And (4) the accuracy prediction and the tolerance optimization of the assembly body are realized. Based on the combined surface error model and the main error transfer path of the assembly body, the assembly error model is established, and the accuracy prediction of the assembly body is realized. The reliability analysis method of assembly accuracy is discussed. According to the accuracy requirement of the assembly, the assembly accuracy reliability and the like are the constraint conditions, the cost is the lowest, the dynamic penalty function method and the genetic algorithm are combined, and the assembly tolerance optimization is realized. So that the processing economy is improved on the premise of meeting the precision requirement. (5) The prediction effect of the assembly error model is verified, and the precision design software system is developed. The prediction accuracy of the assembly error model is verified by the measurement test of the high-precision numerical control grinding machine. Aiming at the problems existing in the expression of the existing three-dimensional precision design information, an integrated annotation expression method is proposed. In order to realize the digital precision design as the goal, the frame of the precision design system is put forward, and the main function modules are introduced. Taking the ACISHOOPS as the platform, the software system, which supports the functions of the three-dimensional dimension of the precision design information, the process planning and information management of the assembly process, and the assembly precision analysis, is developed, and the assembly process planning of the three-dimensional dimension of the typical part precision design information and the gantry guide rail grinding machine is completed by means of the software system.
【學(xué)位授予單位】:湖南大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:TG95
【相似文獻】
相關(guān)期刊論文 前10條
1 林潔瓊;邱立偉;盧明明;;基于多體系統(tǒng)理論的精密加工中心綜合誤差建模[J];機床與液壓;2011年21期
2 陳亞寧;丁文政;裴亮;;三軸再制造機床空間幾何誤差建模與辨識研究[J];機床與液壓;2008年04期
3 徐芳;;基于多體系統(tǒng)理論的五軸聯(lián)動機床誤差建模[J];企業(yè)技術(shù)開發(fā);2014年11期
4 張毅;楊建國;李自漢;;基于自然指數(shù)模型的機床定位誤差建模與實時補償[J];組合機床與自動化加工技術(shù);2013年08期
5 張鋒;鮑磊;孫瑞濤;王福闖;邵敏;;PSA貼敷設(shè)備的精度分析和幾何誤差建模[J];制造業(yè)自動化;2014年13期
6 楊洋;聶學(xué)俊;黃謹佳;沈曉紅;王麗;;機床熱誤差建模研究現(xiàn)狀分析[J];煤礦機械;2012年01期
7 朱秋菊;李郝林;;基于神經(jīng)模糊控制的機床熱誤差建模方法[J];現(xiàn)代制造工程;2012年11期
8 項偉宏,鄭力,劉大成,趙大泉;機床主軸熱誤差建模[J];制造技術(shù)與機床;2000年11期
9 陳劍雄;林述溫;;基于微分變換的數(shù)控機床幾何誤差建模的研究[J];工具技術(shù);2013年08期
10 楊建國,潘志宏,孫振勇,劉行,薛秉源,蔣鑒毅;回歸正交設(shè)計在機床熱誤差建模中的應(yīng)用[J];航空精密制造技術(shù);1999年05期
相關(guān)會議論文 前1條
1 范晉偉;關(guān)佳亮;王文超;駱琪;劉又午;章青;;3-5軸數(shù)控機床通用空間幾何誤差建模及精密加工指令求解方法研究[A];面向21世紀(jì)的生產(chǎn)工程——2001年“面向21世紀(jì)的生產(chǎn)工程”學(xué)術(shù)會議暨企業(yè)生產(chǎn)工程與產(chǎn)品創(chuàng)新專題研討會論文集[C];2001年
相關(guān)博士學(xué)位論文 前4條
1 呂程;基于結(jié)合面誤差建模的裝配精度預(yù)測與優(yōu)化研究[D];湖南大學(xué);2016年
2 李永祥;數(shù)控機床熱誤差建模新方法及其應(yīng)用研究[D];上海交通大學(xué);2007年
3 崔崗衛(wèi);重型數(shù)控落地銑鏜床誤差建模及補償技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2012年
4 李巖;光電穩(wěn)定跟蹤裝置誤差建模與評價問題研究[D];國防科學(xué)技術(shù)大學(xué);2008年
相關(guān)碩士學(xué)位論文 前10條
1 王建亮;機床幾何誤差建模及敏感性分析[D];太原理工大學(xué);2016年
2 查小娜;數(shù)控機床導(dǎo)軌系統(tǒng)關(guān)鍵誤差建模與實時補償研究[D];安徽理工大學(xué);2016年
3 孫宇鵬;A3并聯(lián)動力頭的誤差建模與精度設(shè)計[D];天津大學(xué);2014年
4 李鋒;大型雙柱立車誤差建模、測量及分析[D];上海交通大學(xué);2011年
5 多麗婭;北斗衛(wèi)星導(dǎo)航系統(tǒng)接收模塊的誤差建模及應(yīng)用研究[D];內(nèi)蒙古工業(yè)大學(xué);2014年
6 楊枝;高檔數(shù)控機床幾何誤差建模與參數(shù)溯源優(yōu)化技術(shù)及其應(yīng)用[D];浙江大學(xué);2014年
7 孫慧潔;大型真空調(diào)試平臺的設(shè)計及其誤差建模分析[D];哈爾濱工業(yè)大學(xué);2013年
8 鄒君陽;數(shù)控機床整機熱分析及動態(tài)熱誤差建模的研究[D];華東理工大學(xué);2013年
9 白福友;基于貝葉斯網(wǎng)絡(luò)的數(shù)控機床熱誤差建模研究[D];浙江大學(xué);2008年
10 邱立偉;多軸數(shù)控機床綜合誤差建模與補償?shù)难芯縖D];長春工業(yè)大學(xué);2011年
,本文編號:2478737
本文鏈接:http://www.sikaile.net/kejilunwen/jiagonggongyi/2478737.html