天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 鑄造論文 >

基于結(jié)合面誤差建模的裝配精度預(yù)測與優(yōu)化研究

發(fā)布時間:2019-05-17 02:35
【摘要】:本文以實現(xiàn)復(fù)雜裝配體的精度預(yù)測及優(yōu)化為目的。在分析和研究了國內(nèi)外的裝配體誤差建模方法、裝配體誤差累積與傳遞機理、機械產(chǎn)品的可靠性理論以及公差優(yōu)化方法的基礎(chǔ)上,詳細闡述了多公差耦合作用下零件幾何要素的誤差建模方法,分析了結(jié)合面的誤差形成機理及誤差傳遞屬性,提出了復(fù)雜裝配體誤差傳遞路徑的求解方法,建立了裝配體誤差模型,實現(xiàn)了裝配精度預(yù)測與公差優(yōu)化。在此基礎(chǔ)上,提出了數(shù)字化環(huán)境下精度設(shè)計系統(tǒng)的框架與實現(xiàn)方法,開發(fā)了精度設(shè)計軟件系統(tǒng)平臺。論文的主要內(nèi)容如下:(1)建立了多公差耦合作用下零件幾何要素的誤差模型。采用小位移旋量法描述幾何要素的誤差變動。根據(jù)常見幾何要素的多公差耦合情況,建立了對應(yīng)的誤差變動不等式與約束不等式。在此基礎(chǔ)上,采用蒙特卡洛法模擬實際加工誤差,求得了幾何要素各誤差分量的實際變動區(qū)間帶寬,奠定了結(jié)合面誤差求解的重要基礎(chǔ),并通過響應(yīng)面法建立了幾何要素誤差分量實際變動區(qū)間帶寬與公差之間的顯式函數(shù)關(guān)系,為提高后文公差優(yōu)化的效率提供了重要保障。(2)提出了結(jié)合面誤差建模方法,分析了結(jié)合面誤差傳遞屬性。提出了以結(jié)合面為基礎(chǔ)的裝配體誤差分析方法,根據(jù)結(jié)合面對誤差的累積與傳遞作用,從誤差累積角度分析了各類結(jié)合面誤差的累積形成機理,從誤差傳遞角度分析了不同結(jié)合面對零件的定位約束作用,給出了各類結(jié)合面的誤差傳遞屬性。根據(jù)相鄰結(jié)合面間的關(guān)聯(lián)關(guān)系,討論了結(jié)合面組誤差傳遞屬性的求解方法。鑒于并聯(lián)結(jié)合面誤差傳遞屬性間的相互影響,提出了以裝配定位優(yōu)先級為依據(jù)的并聯(lián)結(jié)合面實際誤差傳遞屬性求解方法,闡述了并聯(lián)結(jié)合面組誤差建模的流程,為建立裝配體誤差模型奠定了基礎(chǔ)。(3)提出了基于JSS矩陣的裝配體誤差傳遞路徑求解方法。分析了復(fù)雜裝配關(guān)系的描述需求,以多色集合理論為基礎(chǔ),采用結(jié)合面符號替代裝配關(guān)系多色集合矩陣中的布爾型元素值,建立了可描述裝配體組成、裝配關(guān)系、結(jié)合面幾何類型、連接方式、配合性質(zhì)等多維信息的結(jié)合面符號矩陣(JSS矩陣)。提出了基于JSS矩陣的裝配體誤差傳遞路徑搜索方法,實現(xiàn)了裝配體主導(dǎo)誤差傳遞路徑的求解,有效降低了裝配體誤差分析的復(fù)雜性,為裝配體誤差建模提供了重要依據(jù)。在此基礎(chǔ)上,討論了支持多層次復(fù)雜裝配體誤差傳遞路徑求解的多重關(guān)聯(lián)JSS矩陣法。(4)實現(xiàn)了裝配體的精度預(yù)測與公差優(yōu)化。以結(jié)合面誤差模型與裝配體主導(dǎo)誤差傳遞路徑為基礎(chǔ),建立了裝配體誤差模型,實現(xiàn)了裝配體的精度預(yù)測。討論了裝配精度的可靠性分析方法,根據(jù)裝配體的精度要求,以裝配精度可靠度等為約束條件,以成本最低為目標(biāo),結(jié)合動態(tài)懲罰函數(shù)法與遺傳算法,實現(xiàn)了裝配體公差優(yōu)化,從而在滿足精度要求的前提下,提高了加工經(jīng)濟性。(5)驗證了裝配體誤差模型的預(yù)測效果,開發(fā)了精度設(shè)計軟件系統(tǒng)。通過高精度數(shù)控磨床的測量試驗,驗證了裝配體誤差模型的預(yù)測精度。針對現(xiàn)有三維精度設(shè)計信息的表達方式存在的問題,提出了集成標(biāo)注表達方法。以實現(xiàn)數(shù)字化精度設(shè)計為目標(biāo),提出了精度設(shè)計系統(tǒng)的框架,介紹了主要功能模塊。以ACISHOOPS為平臺開發(fā)了支持精度設(shè)計信息三維標(biāo)注、裝配過程規(guī)劃與信息管理以及裝配精度分析等功能的軟件系統(tǒng),并借助該軟件系統(tǒng)完成了典型零件精度設(shè)計信息的三維標(biāo)注與龍門導(dǎo)軌磨床的裝配過程規(guī)劃。
[Abstract]:The purpose of this paper is to realize the precision prediction and optimization of complex assembly. Based on the analysis and research of the method of the assembly error modeling at home and abroad, the error accumulation and transmission mechanism of the assembly, the reliability theory of the mechanical product and the tolerance optimization method, the error modeling method of the part geometry under the multi-tolerance coupling is described in detail. In this paper, the error forming mechanism and the error transfer attribute of the combined surface are analyzed, and the method for solving the error propagation path of the complex assembly is proposed, and the assembly error model is established, and the assembly accuracy prediction and the tolerance optimization are realized. On this basis, the framework and implementation method of the precision design system under the digital environment are put forward, and the software system platform of precision design is developed. The main contents of the thesis are as follows: (1) The error model of the part geometry under the multi-tolerance coupling is established. The error variation of the geometric elements is described by means of the small-displacement rotation method. According to the multi-tolerance coupling of common geometric elements, the corresponding error variation inequality and the constraint inequality are established. On this basis, the actual machining error is simulated by the Monte Carlo method, and the actual variation interval bandwidth of each error component of the geometric element is obtained, which lays the important foundation for solving the joint surface error. And the explicit function relation between the bandwidth and the tolerance of the actual variation interval of the geometric element error component is established through the response surface method, and the important guarantee is provided for improving the efficiency of the following tolerance optimization. (2) The joint surface error modeling method is proposed, and the error transfer property of the joint surface is analyzed. The error analysis method of the assembly body based on the combination surface is put forward. Based on the accumulation and transfer function of the combined face error, the accumulative formation mechanism of all kinds of joint surface errors is analyzed from the error accumulation angle, and the positioning and restraining effect of the different combination face parts is analyzed from the error transfer angle. The error transfer property of all kinds of bonding surfaces is given. Based on the relation between the adjacent binding surfaces, the method of solving the error transfer attribute of the combination surface group is discussed. In view of the mutual influence between the error transfer properties of the parallel combination surface, a method for solving the actual error transfer property of the parallel combination plane based on the assembly and positioning priority is put forward, and the flow of the parallel combination surface group error modeling is described, which lays a foundation for building the assembly error model. (3) The method for solving the error propagation path of the assembly based on the JSS matrix is proposed. The description requirement of complex assembly relation is analyzed. Based on the theory of multi-color set, the Boolean element value in the multi-color set matrix is replaced by the combination surface symbol, and the composition, assembly relation, joint surface geometry type and connection mode of the assembly body can be described. The combined surface symbol matrix (JSS matrix) of multi-dimensional information such as the matching property. The method for searching the error propagation path of the assembly body based on the JSS matrix is put forward, the solution of the main error propagation path of the assembly body is realized, the complexity of the error analysis of the assembly body is effectively reduced, and an important basis for modeling the error of the assembly body is provided. On this basis, the multi-correlation JSS matrix method for multi-level complex assembly error transfer path solution is discussed. And (4) the accuracy prediction and the tolerance optimization of the assembly body are realized. Based on the combined surface error model and the main error transfer path of the assembly body, the assembly error model is established, and the accuracy prediction of the assembly body is realized. The reliability analysis method of assembly accuracy is discussed. According to the accuracy requirement of the assembly, the assembly accuracy reliability and the like are the constraint conditions, the cost is the lowest, the dynamic penalty function method and the genetic algorithm are combined, and the assembly tolerance optimization is realized. So that the processing economy is improved on the premise of meeting the precision requirement. (5) The prediction effect of the assembly error model is verified, and the precision design software system is developed. The prediction accuracy of the assembly error model is verified by the measurement test of the high-precision numerical control grinding machine. Aiming at the problems existing in the expression of the existing three-dimensional precision design information, an integrated annotation expression method is proposed. In order to realize the digital precision design as the goal, the frame of the precision design system is put forward, and the main function modules are introduced. Taking the ACISHOOPS as the platform, the software system, which supports the functions of the three-dimensional dimension of the precision design information, the process planning and information management of the assembly process, and the assembly precision analysis, is developed, and the assembly process planning of the three-dimensional dimension of the typical part precision design information and the gantry guide rail grinding machine is completed by means of the software system.
【學(xué)位授予單位】:湖南大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:TG95

【相似文獻】

相關(guān)期刊論文 前10條

1 林潔瓊;邱立偉;盧明明;;基于多體系統(tǒng)理論的精密加工中心綜合誤差建模[J];機床與液壓;2011年21期

2 陳亞寧;丁文政;裴亮;;三軸再制造機床空間幾何誤差建模與辨識研究[J];機床與液壓;2008年04期

3 徐芳;;基于多體系統(tǒng)理論的五軸聯(lián)動機床誤差建模[J];企業(yè)技術(shù)開發(fā);2014年11期

4 張毅;楊建國;李自漢;;基于自然指數(shù)模型的機床定位誤差建模與實時補償[J];組合機床與自動化加工技術(shù);2013年08期

5 張鋒;鮑磊;孫瑞濤;王福闖;邵敏;;PSA貼敷設(shè)備的精度分析和幾何誤差建模[J];制造業(yè)自動化;2014年13期

6 楊洋;聶學(xué)俊;黃謹佳;沈曉紅;王麗;;機床熱誤差建模研究現(xiàn)狀分析[J];煤礦機械;2012年01期

7 朱秋菊;李郝林;;基于神經(jīng)模糊控制的機床熱誤差建模方法[J];現(xiàn)代制造工程;2012年11期

8 項偉宏,鄭力,劉大成,趙大泉;機床主軸熱誤差建模[J];制造技術(shù)與機床;2000年11期

9 陳劍雄;林述溫;;基于微分變換的數(shù)控機床幾何誤差建模的研究[J];工具技術(shù);2013年08期

10 楊建國,潘志宏,孫振勇,劉行,薛秉源,蔣鑒毅;回歸正交設(shè)計在機床熱誤差建模中的應(yīng)用[J];航空精密制造技術(shù);1999年05期

相關(guān)會議論文 前1條

1 范晉偉;關(guān)佳亮;王文超;駱琪;劉又午;章青;;3-5軸數(shù)控機床通用空間幾何誤差建模及精密加工指令求解方法研究[A];面向21世紀(jì)的生產(chǎn)工程——2001年“面向21世紀(jì)的生產(chǎn)工程”學(xué)術(shù)會議暨企業(yè)生產(chǎn)工程與產(chǎn)品創(chuàng)新專題研討會論文集[C];2001年

相關(guān)博士學(xué)位論文 前4條

1 呂程;基于結(jié)合面誤差建模的裝配精度預(yù)測與優(yōu)化研究[D];湖南大學(xué);2016年

2 李永祥;數(shù)控機床熱誤差建模新方法及其應(yīng)用研究[D];上海交通大學(xué);2007年

3 崔崗衛(wèi);重型數(shù)控落地銑鏜床誤差建模及補償技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2012年

4 李巖;光電穩(wěn)定跟蹤裝置誤差建模與評價問題研究[D];國防科學(xué)技術(shù)大學(xué);2008年

相關(guān)碩士學(xué)位論文 前10條

1 王建亮;機床幾何誤差建模及敏感性分析[D];太原理工大學(xué);2016年

2 查小娜;數(shù)控機床導(dǎo)軌系統(tǒng)關(guān)鍵誤差建模與實時補償研究[D];安徽理工大學(xué);2016年

3 孫宇鵬;A3并聯(lián)動力頭的誤差建模與精度設(shè)計[D];天津大學(xué);2014年

4 李鋒;大型雙柱立車誤差建模、測量及分析[D];上海交通大學(xué);2011年

5 多麗婭;北斗衛(wèi)星導(dǎo)航系統(tǒng)接收模塊的誤差建模及應(yīng)用研究[D];內(nèi)蒙古工業(yè)大學(xué);2014年

6 楊枝;高檔數(shù)控機床幾何誤差建模與參數(shù)溯源優(yōu)化技術(shù)及其應(yīng)用[D];浙江大學(xué);2014年

7 孫慧潔;大型真空調(diào)試平臺的設(shè)計及其誤差建模分析[D];哈爾濱工業(yè)大學(xué);2013年

8 鄒君陽;數(shù)控機床整機熱分析及動態(tài)熱誤差建模的研究[D];華東理工大學(xué);2013年

9 白福友;基于貝葉斯網(wǎng)絡(luò)的數(shù)控機床熱誤差建模研究[D];浙江大學(xué);2008年

10 邱立偉;多軸數(shù)控機床綜合誤差建模與補償?shù)难芯縖D];長春工業(yè)大學(xué);2011年



本文編號:2478737

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/jiagonggongyi/2478737.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶4ccb6***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com