恒力砂帶磨拋材料去除理論與實(shí)驗(yàn)研究
[Abstract]:Blades are the core components of key equipments such as engines, steam turbines, compressors and so on in the aviation and power industries, because of their very bad working conditions. Therefore, the blade must have high profile accuracy and excellent surface quality in machining and manufacturing. Belt grinding and polishing is one of the common processing methods in blade finishing. At present, many scientific research institutions and companies at home and abroad have made a large number of grinding and polishing machine tools for the grinding of complex surface workpieces. By taking grinding force as one of the process parameters, the surface grinding and polishing of complex surface workpieces can be realized. In this paper, based on the theory of grinding and polishing, the grinding and polishing technology of complex surface workpiece is studied on the platform of constant force grinding machine. Based on the Preston equation and Hertz contact theory, the material removal profile and maximum material removal depth and normal polishing force are established for grinding workpieces with contact wheel abrasive belt grinding tools. The mathematical expressions of the three technological parameters: the linear velocity of the sand belt and the feed speed of the workpiece; The value of Preston equation constant Kp is determined by experiment, and the mathematical expression of the model is simulated. The relationship between the material removal law and the process parameters is analyzed and explained intuitively by using the simulation curve. In order to study the law of material removal from abrasive belt grinding, a constant force pneumatic control system is needed. The mathematical model of the constant force pneumatic control system is derived by using the relevant knowledge of thermodynamics law, ideal state equation and Newton's second law. Using off-line system identification technology and System Identification toolbox in MATLAB software, the unknown parameters in the mathematical model of pneumatic system are obtained by using M sequence as input excitation signal, and the closed-loop stability of the system is verified. After the mathematical model of pneumatic system is obtained, the block diagram of PID and fuzzy PID simulation program of the system is established, and the advantages and disadvantages of the two control strategies in this pneumatic system are compared by simulation. Then the program of these two control methods is written by using LabVIEW software. It is proved by experiment that fuzzy PID control method can achieve more ideal control effect for nonlinear system. The kistler dynamometer is used to verify that the system can accurately output the normal grinding force required in the machining process. The control software of pneumatic polishing is developed by using LabVIEW software, which can collect, transmit, process and control the signal data in the grinding process. It is convenient for users to operate in the grinding process. The material removal experiments were carried out with the aid of this polishing machine to verify the accuracy of the model of material removal profile and maximum removal depth. Finally, the accuracy of the material removal model is proved by comparing the curves obtained by experiments with the simulation curves of the model.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TG580.6
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 易國民;周健伊;易臻希;;精密磨拋頭設(shè)計(jì)[J];科技資訊;2007年29期
2 吳貴生,胡旦陽;砂頁輪的磨拋機(jī)理及其試驗(yàn)研究[J];磨料磨具與磨削;1990年04期
3 ;小型精密手工磨拋儀獲國家發(fā)明專利[J];中國西部科技;2008年05期
4 吳曉君;孫樹棟;;研磨中心上曲面自動(dòng)磨拋的實(shí)驗(yàn)研究[J];機(jī)械設(shè)計(jì)與制造;2011年11期
5 范靖亞;擠鋁模具的擠壓珩磨拋光[J];輕合金加工技術(shù);1984年04期
6 謝朝學(xué);用筒式滾磨機(jī)對(duì)不銹鋼餐刀進(jìn)行磨拋工藝的研究[J];磨料磨具與磨削;1992年05期
7 智黎;;雙頭程控磨拋機(jī)[J];機(jī)械與電子;1993年01期
8 劉克;;工業(yè)機(jī)器人自動(dòng)磨拋系統(tǒng)[J];福建農(nóng)機(jī);2010年04期
9 余巖;;不銹鋼叉子的高效磨拋技術(shù)[J];新技術(shù)新工藝;2011年12期
10 劉領(lǐng)濤;孫維連;王會(huì)強(qiáng);;金相試樣磨拋機(jī)控制系統(tǒng)設(shè)計(jì)[J];電工技術(shù);2011年03期
相關(guān)會(huì)議論文 前2條
1 王浩程;張宏太;張德良;方新;;行星滾磨拋光磨料流態(tài)特征的數(shù)值模擬[A];全國生產(chǎn)工程第九屆年會(huì)暨第四屆青年科技工作者學(xué)術(shù)會(huì)議論文集(二)[C];2004年
2 余英良;王翠蘭;;車磨拋合一的數(shù)控加工及拋磨循環(huán)程序的應(yīng)用[A];2005年中國機(jī)械工程學(xué)會(huì)年會(huì)論文集[C];2005年
相關(guān)重要報(bào)紙文章 前3條
1 張麗紅;石材地面“無縫磨拋與翻新技術(shù)”[N];中國礦業(yè)報(bào);2002年
2 于茗仲 王維升;手扶式多功能石材磨拋加工機(jī)問世[N];中國機(jī)電日?qǐng)?bào);2000年
3 鄭原馳 仲崇玉 本報(bào)記者 李林巖;探索點(diǎn)亮新生活[N];吉林日?qǐng)?bào);2013年
相關(guān)博士學(xué)位論文 前3條
1 霍文國;鈦合金干式磨拋加工技術(shù)研究[D];南京航空航天大學(xué);2010年
2 李大奇;葉片雙面磨拋系統(tǒng)及路徑規(guī)劃研究[D];吉林大學(xué);2011年
3 趙軍;大構(gòu)件焊縫磨拋機(jī)器人視覺測(cè)量技術(shù)的研究[D];吉林大學(xué);2014年
相關(guān)碩士學(xué)位論文 前10條
1 于興展;彈性磨具磨拋加工中磨拋參數(shù)與磨拋效果相關(guān)性的研究[D];西安建筑科技大學(xué);2015年
2 劉睿平;采用彈性磨具對(duì)M300磨拋的微觀接觸參數(shù)模型研究[D];西安建筑科技大學(xué);2015年
3 程小漢;多面數(shù)控磨拋機(jī)的設(shè)計(jì)與試驗(yàn)研究[D];廈門理工學(xué)院;2016年
4 袁強(qiáng);整體葉盤磨拋/測(cè)量軌跡規(guī)劃與工藝研究[D];吉林大學(xué);2016年
5 高亞鵬;整體葉盤磨拋工具系統(tǒng)控制研究[D];吉林大學(xué);2016年
6 付林;葉片復(fù)雜曲面磨拋加工路徑規(guī)劃算法研究[D];吉林大學(xué);2016年
7 蔡得領(lǐng);機(jī)器人砂帶磨拋控制系統(tǒng)設(shè)計(jì)[D];華中科技大學(xué);2014年
8 宋鵬飛;石材線條數(shù)控磨拋機(jī)的研究與設(shè)計(jì)[D];華中科技大學(xué);2015年
9 楊龍;機(jī)器人砂帶磨拋力建模及其在鈦合金葉片加工中的應(yīng)用[D];華中科技大學(xué);2015年
10 趙永兵;混聯(lián)葉片磨拋機(jī)床誤差分析及實(shí)驗(yàn)研究[D];吉林大學(xué);2017年
,本文編號(hào):2318378
本文鏈接:http://www.sikaile.net/kejilunwen/jiagonggongyi/2318378.html