微細銑削鋁合金6061表面毛刺研究
發(fā)布時間:2018-08-02 18:53
【摘要】:目的揭示微細銑削鋁合金6061過程中,銑削工藝參數(shù)(切削深度a_p、每齒進給量f_z、切削速度v)、順逆銑方式、刀具磨損對毛刺大小及形態(tài)的影響規(guī)律,為控制鋁合金6061毛刺,提高表面質量,優(yōu)化切削工藝提供參考。方法基于單因素試驗方法,采用涂層硬質合金微直徑銑刀,對鋁合金6061進行了銑削加工試驗,分別對切削參數(shù)單因素試驗的逆銑、順銑頂端毛刺大小數(shù)據(jù)以及刀具磨損、毛刺形態(tài)信息進行采集和分析。結果直觀繪制了a_p、v、f_z對逆順銑兩側頂端毛刺大小的影響規(guī)律圖。單因素切削速度試驗中,順銑側毛刺最大為323μm,逆銑側最大為268μm;單因素每齒進給量試驗中,順銑側毛刺最大為332μm,逆銑側最大為331μm;單因素切深試驗中順銑側毛刺最大為314μm,逆銑側最大為264μm。結論逆銑比順銑的頂端毛刺小,隨切削深度增加,毛刺依次呈現(xiàn)長條須狀、撕裂狀、波浪形鋸齒狀。刀具磨損是造成切削過程不穩(wěn)定的重要因素,同時也會造成毛刺形態(tài)和大小不穩(wěn)定。為盡量減少毛刺,應采用鋒利刀具和逆銑方式,控制切削深度,選擇合適的切削速度和進給量。
[Abstract]:Objective to reveal the effect of milling process parameters (cutting depth, feed rate per tooth, cutting speed, v), and tool wear) on the size and shape of aluminum alloy 6061, in order to control the size and shape of aluminum alloy 6061 burr. Improve surface quality and optimize cutting process to provide reference. Methods based on the single factor test method, the milling experiments of aluminum alloy 6061 were carried out by using the coated cemented carbide micro diameter milling cutter. The data of the back milling, the top burr size data and the tool wear of the single factor test of cutting parameters were carried out, respectively. The morphological information of burr was collected and analyzed. Results the effect of apical burr size on the tip burr size of apical burr in retrograde milling was drawn directly. In the single factor cutting speed test, the maximum of side burr is 323 渭 m, and the maximum of reverse milling side is 268 渭 m. The maximum of the side burr is 332 渭 m, the maximum of the reverse side is 331 渭 m, the maximum of the side burr is 314 渭 m and the maximum of the inverse side is 264 渭 m. Conclusion the back milling is smaller than the top burr of the down-milling. With the increase of cutting depth, the burr is in turn long stripe, tear and wavy sawtooth. Tool wear is an important factor in the instability of cutting process, and it can also cause instability of burr shape and size. In order to reduce burr, cutting depth should be controlled by means of sharp cutting tool and reverse milling, and suitable cutting speed and feed rate should be selected.
【作者單位】: 北京建筑大學機電與車輛工程學院;城市軌道交通車輛服役性能保障北京市重點實驗室;北京市建筑安全監(jiān)測工程技術研究中心;
【基金】:北京市教育委員會科技計劃面上項目(KM201510016008) 北京市優(yōu)秀人才培養(yǎng)資助(2014000020124G056) 國家自然科學基金項目(51505006)~~
【分類號】:TG54
本文編號:2160389
[Abstract]:Objective to reveal the effect of milling process parameters (cutting depth, feed rate per tooth, cutting speed, v), and tool wear) on the size and shape of aluminum alloy 6061, in order to control the size and shape of aluminum alloy 6061 burr. Improve surface quality and optimize cutting process to provide reference. Methods based on the single factor test method, the milling experiments of aluminum alloy 6061 were carried out by using the coated cemented carbide micro diameter milling cutter. The data of the back milling, the top burr size data and the tool wear of the single factor test of cutting parameters were carried out, respectively. The morphological information of burr was collected and analyzed. Results the effect of apical burr size on the tip burr size of apical burr in retrograde milling was drawn directly. In the single factor cutting speed test, the maximum of side burr is 323 渭 m, and the maximum of reverse milling side is 268 渭 m. The maximum of the side burr is 332 渭 m, the maximum of the reverse side is 331 渭 m, the maximum of the side burr is 314 渭 m and the maximum of the inverse side is 264 渭 m. Conclusion the back milling is smaller than the top burr of the down-milling. With the increase of cutting depth, the burr is in turn long stripe, tear and wavy sawtooth. Tool wear is an important factor in the instability of cutting process, and it can also cause instability of burr shape and size. In order to reduce burr, cutting depth should be controlled by means of sharp cutting tool and reverse milling, and suitable cutting speed and feed rate should be selected.
【作者單位】: 北京建筑大學機電與車輛工程學院;城市軌道交通車輛服役性能保障北京市重點實驗室;北京市建筑安全監(jiān)測工程技術研究中心;
【基金】:北京市教育委員會科技計劃面上項目(KM201510016008) 北京市優(yōu)秀人才培養(yǎng)資助(2014000020124G056) 國家自然科學基金項目(51505006)~~
【分類號】:TG54
【相似文獻】
中國期刊全文數(shù)據(jù)庫 前10條
1 李巨光,王繼尚;順逆銑加工刷柄曲面的若干特性分析[J];青島海洋大學學報;1995年S1期
2 李玉煒;馮小軍;孫友松;;順逆銑對表面粗糙度影響的軌跡包絡幾何分析和實驗驗證[J];深圳職業(yè)技術學院學報;2014年03期
3 沈黎明;;編制順逆銑可切換程序的探討[J];現(xiàn)代企業(yè)教育;2014年10期
4 李玉煒;孫友松;;順逆銑對表面粗糙度影響的軌跡包絡幾何分析和實驗驗證[J];制造技術與機床;2014年06期
5 ;采用躍進滾刀的體會[J];機床與工具;1959年04期
6 曹騰云;順銑與逆銑時刀齒接觸長度及切削厚度的數(shù)值計算和比較[J];南昌大學學報(工程技術版);1994年03期
7 陳山弟;車削時的順銑逆銑現(xiàn)象[J];機械工人.冷加工;2001年04期
8 劉德勝;田玉奇;;淺析順銑與逆銑[J];金屬加工(冷加工);2009年04期
9 賀毅;;順銑和逆銑的異同分析[J];科技創(chuàng)新導報;2013年13期
10 朱廷樞;順銑與逆銑的刀齒耐用度比較[J];福州大學學報;1965年00期
,本文編號:2160389
本文鏈接:http://www.sikaile.net/kejilunwen/jiagonggongyi/2160389.html
最近更新
教材專著