薄壁銅管游動(dòng)芯頭拉拔機(jī)上料系統(tǒng)關(guān)鍵技術(shù)及拉拔成形過程影響研究
本文選題:薄壁銅管 + 上料系統(tǒng); 參考:《江西理工大學(xué)》2017年碩士論文
【摘要】:現(xiàn)有的薄壁銅管游動(dòng)芯頭拉拔機(jī)都采用人工進(jìn)行上料,但人工上料不僅勞動(dòng)強(qiáng)度大,而且生產(chǎn)效率低,已經(jīng)不能滿足現(xiàn)代工程的需要,要實(shí)現(xiàn)薄壁銅管游動(dòng)芯頭拉拔機(jī)自動(dòng)上料存在兩大技術(shù)難點(diǎn),一是游動(dòng)芯頭穿芯定位精度高,二是因銅管長且撓度大造成銅管單根分選困難。同時(shí),銅管缺陷和拉拔工藝參數(shù)等對(duì)拉拔成形具有較大的影響。因此,本文的研究具有良好的研究價(jià)值與應(yīng)用前景。論文采用理論分析、數(shù)值模擬與試驗(yàn)分析相結(jié)合的方法完成以下工作:針對(duì)游動(dòng)芯頭穿進(jìn)銅管裝配問題,通過游動(dòng)芯頭穿芯空間誤差分析,建立裝配尺寸鏈并求解,確定游動(dòng)芯頭穿芯技術(shù)方案;針對(duì)大撓度銅管單根分選問題,對(duì)銅管分選進(jìn)行動(dòng)力學(xué)仿真分析,確定分選方案;完成拉拔機(jī)自動(dòng)上料系統(tǒng)機(jī)械結(jié)構(gòu)與控制系統(tǒng)設(shè)計(jì);結(jié)合實(shí)際生產(chǎn),對(duì)游動(dòng)芯頭拉拔過程進(jìn)行有限元模擬分析。論文的主要研究結(jié)果:(1)對(duì)管坯、芯桿、游動(dòng)芯頭組成的空間裝配系統(tǒng)進(jìn)行分析,定量描述游動(dòng)芯頭穿芯空間定位誤差,以游動(dòng)芯頭與銅管間隙為封閉環(huán),建立銅管穿芯裝配空間尺寸鏈,采用大數(shù)互換法對(duì)裝配尺寸鏈實(shí)例求解說明,確定游動(dòng)芯頭穿芯方法和穿芯技術(shù)方案,即采用V型塊定位,結(jié)合雙旋自定心夾緊機(jī)構(gòu)方式可完成芯頭定位穿芯。(2)在分析單根銅管分選特征基礎(chǔ)上,基于ADAMS建立銅管分選模型,以分選Φ106mm薄壁管材為例,探討工藝參數(shù)(分選速度、傾斜角度、銅管撓度)對(duì)單根銅管分選技術(shù)指標(biāo)(上升高度、分選完成時(shí)間、接觸力)的影響,再基于ADAMS建立多根銅管分選模型,探討工藝參數(shù)(分選速度、傾斜角度)對(duì)銅管分選效果(分選率、分選時(shí)間、重疊率)的影響,得到分選速度在400mm/s~800mm/s、傾斜角度在35°~40°分選效果較好,并通過試驗(yàn)驗(yàn)證。(3)在常規(guī)拉拔機(jī)的基礎(chǔ)上,結(jié)合游動(dòng)芯頭穿芯技術(shù)方案和銅管分選裝置仿真分析結(jié)果,將自動(dòng)上料系統(tǒng)分為分選、輸送、定位穿芯、雙移位和送進(jìn)5個(gè)模塊,對(duì)每個(gè)模塊進(jìn)行結(jié)構(gòu)設(shè)計(jì),并完成上料系統(tǒng)控制系統(tǒng)初步設(shè)計(jì)。(4)針對(duì)銅管壁厚不均勻等問題,以H62合金為例,通過H62銅合金單向拉伸試驗(yàn),采用彈粘塑性模型,構(gòu)建H62銅合金本構(gòu)模型,基于MARC軟件對(duì)薄壁銅管游動(dòng)芯頭拉拔過程數(shù)值模擬,定量分析銅管壁厚波動(dòng)與摩擦系數(shù)對(duì)拉拔過程(拉拔力、等效應(yīng)力應(yīng)變、芯頭軸向運(yùn)動(dòng))的影響,并對(duì)比分析游動(dòng)芯頭拉拔和固定芯頭拉拔,發(fā)現(xiàn)游動(dòng)芯頭拉拔有助于提高產(chǎn)品質(zhì)量。
[Abstract]:The existing thin-walled copper pipe moving core drawing machines use manual feeding, but the manual feeding not only has a large labor intensity, but also has low production efficiency, so it can not meet the needs of modern engineering. In order to realize the automatic feeding of thin wall copper pipe moving core drawing machine, there are two major technical difficulties: one is the high positioning accuracy of the swimming core head through the core, the other is the difficulty of single copper pipe sorting due to the long copper pipe and large deflection. At the same time, copper tube defects and drawing process parameters have great influence on drawing forming. Therefore, the research of this paper has good research value and application prospect. In this paper, the method of theoretical analysis, numerical simulation and experimental analysis is used to accomplish the following work: to solve the assembly problem of the floating core head, the dimension chain is established and solved by analyzing the spatial error of the swimming core head through the copper pipe. To solve the problem of single separation of large deflection copper pipe, the dynamic simulation analysis of copper pipe sorting is carried out to determine the separation scheme, and the mechanical structure and control system design of automatic feeding system of drawing machine are completed. Combined with the actual production, the drawing process of the moving core head is simulated and analyzed by finite element method. The main results of this paper are as follows: (1) the spatial assembly system composed of tube billet, core rod and swimming core head is analyzed, and the space positioning error of walking core head is quantitatively described. The gap between the swimming core head and copper pipe is taken as the closed ring. The space dimension chain of copper pipe through core assembly is established, and the example of assembly dimension chain is solved by large number exchange method. The core piercing method and the core piercing technique scheme are determined, that is, V-shaped block positioning is adopted. Combined with the double rotation self-centring clamping mechanism, the core head can be positioned through the core. (2) on the basis of analyzing the separation characteristics of a single copper pipe, the separation model of copper pipe is established based on Adams. Taking 桅 106mm thin wall pipe as an example, the process parameters (separation speed) are discussed. The influence of inclined angle, deflection of copper pipe on the technical index of single copper pipe separation (rising height, finishing time, contact force) is discussed. Based on Adams, the separation model of multiple copper pipes is established, and the process parameters (separation speed, separation speed) are discussed. The effect of inclined angle on the separation efficiency (separation rate, separation time, overlap rate) of copper pipe shows that the separation speed is 400 mm / s / s, and the inclination angle is 35 擄/ 40 擄, which is proved by experiments. (3) on the basis of conventional drawing machine, the separation speed is 400 mm / s / s and the angle is 35 擄/ 40 擄. (3) on the basis of conventional drawing machines, Combined with the technical scheme of core piercing and the result of simulation analysis of copper pipe sorting device, the automatic feeding system is divided into five modules: sorting, conveying, locating, double shifting and feeding into the core, and the structure of each module is designed. The control system of feeding system is designed. (4) aiming at the problem of uneven wall thickness of copper pipe, taking H62 alloy as an example, the constitutive model of H62 copper alloy is constructed by using elastic-viscoplastic model through uniaxial tensile test of H62 copper alloy. Based on the numerical simulation of the drawing process of the floating core of thin wall copper pipe by Marc software, the effects of wall thickness fluctuation and friction coefficient on the drawing process (drawing force, equivalent stress and strain, axial movement of the core head) are quantitatively analyzed. By comparing and analyzing the moving core head drawing and the fixed core head drawing, it is found that the swimming core head drawing is helpful to improve the product quality.
【學(xué)位授予單位】:江西理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TG356
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王雷;李明;楊成剛;魏書平;何慧娟;劉春景;;工業(yè)送料機(jī)構(gòu)設(shè)計(jì)、建模與PLC控制[J];重慶理工大學(xué)學(xué)報(bào)(自然科學(xué));2015年07期
2 陳朝偉;張榮欣;;高速履帶式連續(xù)拉拔機(jī)的設(shè)計(jì)研究[J];鋼管;2014年05期
3 李利珍;陳金瑞;魏冰陽;李大慶;;GH35弧齒錐齒輪銑齒機(jī)分齒運(yùn)動(dòng)的PLC控制[J];機(jī)械傳動(dòng);2014年02期
4 徐建偉;曾衛(wèi)東;劉江林;劉建偉;史一功;;多芯復(fù)合超導(dǎo)線拉拔的有限元模擬[J];材料導(dǎo)報(bào);2013年20期
5 趙升噸;李泳嶧;范淑琴;;超聲振動(dòng)塑性加工技術(shù)的現(xiàn)狀分析[J];中國機(jī)械工程;2013年06期
6 齊海群;張宏;宋曉國;王麗雪;尹志娟;單小彪;;施加反拉力復(fù)合超聲振動(dòng)拉絲的實(shí)驗(yàn)研究[J];哈爾濱工程大學(xué)學(xué)報(bào);2013年03期
7 王君;;中國銅管行業(yè)發(fā)展現(xiàn)狀與國際競爭力分析[J];資源再生;2012年12期
8 毛浩恩;秦芳;邢玉梅;代永娟;閆華軍;;錐形管無模拉拔壁厚變化規(guī)律[J];沈陽工業(yè)大學(xué)學(xué)報(bào);2013年01期
9 吳麗君;齊海群;單小彪;宋曉國;王麗雪;尹志娟;;施加反拉力的超聲振動(dòng)拉絲過程仿真[J];黑龍江工程學(xué)院學(xué)報(bào)(自然科學(xué)版);2012年03期
10 齊海群;單小彪;吳麗君;宋曉國;王麗雪;尹志娟;;大功率超聲振動(dòng)拉拔鈦合金絲材的實(shí)驗(yàn)研究[J];黑龍江工程學(xué)院學(xué)報(bào)(自然科學(xué)版);2012年02期
相關(guān)碩士學(xué)位論文 前10條
1 郭凱;聚焦式功率疊加超聲振子及鈦絲拉拔研究[D];哈爾濱工業(yè)大學(xué);2015年
2 李曉;基于PLC的木工機(jī)械多軸運(yùn)動(dòng)控制系統(tǒng)設(shè)計(jì)與研究[D];山東大學(xué);2015年
3 劉昱成;高壓潤滑拉拔機(jī)工藝分析與控制系統(tǒng)設(shè)計(jì)[D];燕山大學(xué);2015年
4 武戰(zhàn)利;鋼管內(nèi)外高壓潤滑精密拉拔成形技術(shù)研究[D];燕山大學(xué);2015年
5 嚴(yán)春飛;基于圖像處理與PLC控制的三軸工具磨床工作臺(tái)定位系統(tǒng)研究[D];上海師范大學(xué);2015年
6 王勇龍;TP2銅管水平連鑄結(jié)晶器與工藝研究[D];沈陽理工大學(xué);2015年
7 楊崇秋;鈦及鈦合金絲的縱扭復(fù)合超聲振動(dòng)拉拔仿真及機(jī)理研究[D];哈爾濱工業(yè)大學(xué);2014年
8 章磊;高精度鋁合金矩形管冷拉拔成形中的內(nèi)表面粗糙度研究[D];重慶大學(xué);2014年
9 徐軼;矩形鋼管拉拔成形三維彈塑性有限元模擬及優(yōu)化研究[D];合肥工業(yè)大學(xué);2006年
10 張召鐸;銅管拉拔成形摩擦機(jī)理及潤滑劑性能測(cè)試裝置研究[D];山東大學(xué);2005年
,本文編號(hào):2077634
本文鏈接:http://www.sikaile.net/kejilunwen/jiagonggongyi/2077634.html