測(cè)力型快速刀具伺服系統(tǒng)的理論與實(shí)驗(yàn)研究
發(fā)布時(shí)間:2018-06-19 06:06
本文選題:金剛石車(chē)削 + 快速刀具伺服; 參考:《吉林大學(xué)》2017年碩士論文
【摘要】:快速刀具伺服(Fast Tool Servo,簡(jiǎn)稱FTS)機(jī)構(gòu)可實(shí)現(xiàn)刀具相對(duì)旋轉(zhuǎn)工件的快速高頻往復(fù)運(yùn)動(dòng),在非回轉(zhuǎn)對(duì)稱光學(xué)自由曲面的精密超精密加工和機(jī)床加工誤差補(bǔ)償中具有較為廣泛的應(yīng)用需求。切削力對(duì)于機(jī)械加工質(zhì)量有著至關(guān)重要的影響,無(wú)論是利用FTS實(shí)現(xiàn)誤差補(bǔ)償還是用于自由曲面加工,測(cè)量切削力都是十分必要的。準(zhǔn)確測(cè)量切削力有助于揭示FTS切削加工機(jī)理,因此在基于FTS的單點(diǎn)金剛石車(chē)削機(jī)構(gòu)中集成切削力的測(cè)量功能是十分必要的,F(xiàn)有的車(chē)削切削力測(cè)量主要有兩種:一種是將測(cè)力裝置安裝在主軸上,另一種是將測(cè)力裝置安裝在刀座上。FTS是一種柔性加工機(jī)構(gòu),切削厚度始終在高頻變化,對(duì)于利用FTS的車(chē)削,無(wú)論將測(cè)力裝置安裝在FTS的底座還是靠近刀具端,現(xiàn)有的技術(shù)方案都不能有效地進(jìn)行切削力測(cè)量。如何準(zhǔn)確測(cè)量FTS切削力已成為目前急待解決的問(wèn)題。論文系統(tǒng)評(píng)述了國(guó)際上針對(duì)FTS開(kāi)展的系列研究,主要涉及FTS的工作原理、結(jié)構(gòu)、種類(lèi)、發(fā)展歷程和應(yīng)用前景等,重點(diǎn)分析了國(guó)外現(xiàn)有的測(cè)力型FTS的研究現(xiàn)狀,并指出了存在的問(wèn)題。為解決FTS切削力的測(cè)量問(wèn)題,本文基于一種具有Y向和Z向切削力測(cè)量功能的FTS進(jìn)行了切削力測(cè)量誤差分析,總結(jié)出了測(cè)力型FTS的設(shè)計(jì)經(jīng)驗(yàn),分析了各參數(shù)與切削力測(cè)量誤差的關(guān)系。設(shè)計(jì)出了一種具有三向切削力測(cè)量功能的FTS,建立了切削力真值與測(cè)量值的關(guān)系,通過(guò)靜態(tài)標(biāo)定測(cè)試驗(yàn)證了測(cè)力準(zhǔn)確性,并通過(guò)在線切削測(cè)試測(cè)得其切削力。本文的研究?jī)?nèi)容主要包括如下。1.對(duì)比分析了壓力傳感器前置型和后置型兩種測(cè)力FTS的切削力測(cè)量的準(zhǔn)確性,設(shè)計(jì)了一種具有兩向切削力測(cè)量功能的壓力傳感器前置型FTS,并基于該FTS進(jìn)行了切削力測(cè)量誤差分析。2.研制了一種三向測(cè)力型FTS,提出了一種等腰三角形T型布置的三向切削力測(cè)量方案,通過(guò)對(duì)切削力測(cè)量系統(tǒng)的動(dòng)力學(xué)分析,分別建立了三向切削力測(cè)量模型;陬l率響應(yīng)函數(shù),提出了一種誤差補(bǔ)償方法。3.設(shè)計(jì)并研制了一種四自由度龍門(mén)型壓電激振器,可以對(duì)空間各個(gè)方向?qū)崿F(xiàn)不同頻率的激振力的施加,可有效滿足靜態(tài)標(biāo)定實(shí)驗(yàn)的需求。進(jìn)行了一系列的機(jī)下試驗(yàn),驗(yàn)證了三向測(cè)力型FTS的工作性能。4.搭建了三向模擬切削力靜態(tài)標(biāo)定系統(tǒng),實(shí)施了模擬切削力激振實(shí)驗(yàn),測(cè)出了各項(xiàng)切削力的測(cè)量誤差。應(yīng)用所述的三向測(cè)力型FTS,加工出了一系列的平面和自由曲面,并測(cè)出了相應(yīng)的切削力。本文的貢獻(xiàn)在于:提出了一種針對(duì)測(cè)力型FTS的切削力測(cè)量誤差分析方法,設(shè)計(jì)并制作出了一種具有三向切削力測(cè)量功能的FTS機(jī)構(gòu),提出了一種三向切削力誤差補(bǔ)償方法。
[Abstract]:Fast tool Servo (FTS) mechanism can realize the rapid high frequency reciprocating motion of the tool relative to the rotating workpiece. It has more extensive application requirements in the precision ultra-precision machining of the non-rotational symmetric optical free-form surface and the error compensation of the machine tool. Cutting force plays an important role in machining quality. It is necessary to measure cutting force for error compensation by FTS and for free-form surface machining. Accurate measurement of cutting force is helpful to reveal the mechanism of FTS cutting, so it is necessary to integrate the measuring function of cutting force in single point diamond turning mechanism based on FTS. There are two kinds of cutting force measurement: one is to install the force measuring device on the spindle, the other is to install the force measuring device on the tool holder. FTS is a kind of flexible machining mechanism, and the cutting thickness always changes at high frequency. For turning with FTS, the existing technical scheme can not effectively measure the cutting force, whether it is installed in the base of FTS or near the tool end. How to accurately measure the cutting force of FTS has become an urgent problem to be solved. This paper systematically reviews the series of studies on FTS in the world, which mainly involve the working principle, structure, category, development and application prospect of FTS, and analyzes the current research situation of the force-based FTS abroad. The existing problems are pointed out. In order to solve the problem of measuring cutting force of FTS, this paper analyzes the error of cutting force measurement based on a kind of FTS which has the function of measuring cutting force in Y direction and Z direction, and summarizes the design experience of force measuring type FTS. The relationship between the parameters and the measuring error of cutting force is analyzed. A kind of FTS with the function of three direction cutting force measurement is designed, and the relationship between the true value of cutting force and the measured value is established. The accuracy of force measurement is verified by static calibration test, and the cutting force is measured by on-line cutting test. The main contents of this paper are as follows. 1. This paper compares and analyzes the accuracy of cutting force measurement of pressure-sensor and post-type FTS, designs a pressure-sensor front-end FTS with the function of two-direction cutting force measurement, and analyzes the error of cutting force measurement based on the FTS. In this paper, a kind of three direction force measurement model FTS is developed, and a measuring scheme of three direction cutting force with T shape arrangement of isosceles triangle is put forward. Based on the dynamic analysis of the cutting force measurement system, the three direction cutting force measurement model is established respectively. Based on the frequency response function, an error compensation method. A kind of four-degree-of-freedom gantry piezoelectric vibration exciter is designed and developed, which can apply the exciting force of different frequencies in different directions of space, and can meet the demand of static calibration experiment. A series of machine-down tests were carried out to verify the performance of three-direction force-measuring FTS. 4. The static calibration system of three direction simulated cutting force is built, and the experiment of simulating cutting force exciting vibration is carried out, and the measuring error of each cutting force is measured. A series of plane and free surface are machined by using the three direction force measurement type FTS, and the corresponding cutting forces are measured. The contributions of this paper are as follows: a method for error analysis of cutting force measurement for force-measuring FTS is proposed, a FTS mechanism with the function of three-direction cutting force measurement is designed and fabricated, and a method for compensating the error of three-direction cutting force is proposed.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TG659
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳玉;李剛;;壓力傳感器動(dòng)態(tài)特性研究[J];煤礦機(jī)電;2008年05期
2 陳得民;張?jiān)?廉飛宇;付麥霞;;糧庫(kù)專(zhuān)用壓力傳感器的研制[J];河南工業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版);2008年06期
3 韓鈞萬(wàn) ,劉洪清 ,孫順進(jìn);碳?jí)毫鞲衅鞯某醪綄?shí)驗(yàn)研究[J];爆炸與沖擊;1983年02期
4 彭斯福;擴(kuò)散硅壓力傳感器[J];北京化纖工學(xué)院學(xué)報(bào);1983年01期
5 孫德輝;;也談線性壓力傳感器各種擬合方法的比較[J];計(jì)量技術(shù);1985年11期
6 裴錫安;;鈦合金在小量程壓力傳感器中的應(yīng)用[J];儀表材料;1986年01期
7 黃特偉;韓天祥;;全用鈮合金的振弦壓力傳感器[J];儀表材料;1986年01期
8 馮彤洲;;秦晶牌壓力傳感器選用方法[J];石油化工;1990年06期
9 姚平喜;;壓力傳感器的正確選用與安裝[J];鍛壓機(jī)械;1991年04期
10 裴,
本文編號(hào):2038817
本文鏈接:http://www.sikaile.net/kejilunwen/jiagonggongyi/2038817.html
最近更新
教材專(zhuān)著